If a circle be drawn, so as always to touch a given straight line and also a given circle, prove that the locus of its center is a parabola.
Answer
365.7k+ views
Hint: Take the given condition on plane and draw a line parallel to the given line at the distance equal to radius of given circle.
Given: A circle and a straight line.
We have to prove that locus of center of circle drawn touching given circle and straight line is parabola.
We have to prove that locus of center of circle drawn touching given circle and straight line is parabola.
Complete step by step solution:
Let the given line be \[h=0\] and given circle be \[{{C}_{1}}=0\] with center \[Q\] and radius \[{{R}_{o}}\].
Now, circle is drawn touching line \[h=0\] and circle \[{{C}_{1}}=0\] is \[{{C}_{2}}=0\] with center \[P\] and radius \[{{r}_{o}}\].
From diagram, we can see that,
\[PQ={{r}_{o}}+{{R}_{o}}.....\left( i \right)\]
As, \[{{r}_{o}}\] and \[PD\] are radius of circle \[{{C}_{2}}\],
We get, \[{{r}_{o}}=PD\]
Therefore, \[PQ=PD+{{R}_{o}}....\left( ii \right)\]
Construct a line \[{{h}_{1}}=0\] parallel to \[h=0\] at a distance \[{{R}_{o}}\] from \[h=0\] and extend \[PQ\] as shown.
Since \[h\] is parallel to \[{{h}_{1}}\],
Therefore, \[DR={{R}_{o}}...\left( iii \right)\]
Now, we know that
\[PQ={{r}_{o}}+{{R}_{o}}...\left( iv \right)\]
Therefore, \[PQ=PD+{{R}_{o}}\]….from equation \[\left( i \right)\]
Also, \[PR=PD+DR\text{ }\!\![\!\!\text { by diagram }\!\!]\!\!\text{ }\]
Therefore, \[PR={{r}_{o}}+{{R}_{o}}....\left( v \right)\left[ \text{From equation }\left( iii \right) \right]\]
Now, we know that any point on parabola has equal distances from its directrix and focus.
Similarly, here point \[P\] which is center of circle has equal distance \[\left[ {{r}_{o}}+{{R}_{o}} \right]\] from \[{{h}_{1}}=0\] and point \[Q\].
Therefore, here \[{{h}_{1}}\] is behaving as directrix and \[Q\] as a focus of parabola.
Hence, locus of \[P\] is parabola.
Note: Students must understand the physical significances of coordinate geometry and importance of theory, specifically parabola in the given question.
Now, circle is drawn touching line \[h=0\] and circle \[{{C}_{1}}=0\] is \[{{C}_{2}}=0\] with center \[P\] and radius \[{{r}_{o}}\].
From diagram, we can see that,
\[PQ={{r}_{o}}+{{R}_{o}}.....\left( i \right)\]
As, \[{{r}_{o}}\] and \[PD\] are radius of circle \[{{C}_{2}}\],
We get, \[{{r}_{o}}=PD\]
Therefore, \[PQ=PD+{{R}_{o}}....\left( ii \right)\]
Construct a line \[{{h}_{1}}=0\] parallel to \[h=0\] at a distance \[{{R}_{o}}\] from \[h=0\] and extend \[PQ\] as shown.
Since \[h\] is parallel to \[{{h}_{1}}\],
Therefore, \[DR={{R}_{o}}...\left( iii \right)\]
Now, we know that
\[PQ={{r}_{o}}+{{R}_{o}}...\left( iv \right)\]
Therefore, \[PQ=PD+{{R}_{o}}\]….from equation \[\left( i \right)\]
Also, \[PR=PD+DR\text{ }\!\![\!\!\text { by diagram }\!\!]\!\!\text{ }\]
Therefore, \[PR={{r}_{o}}+{{R}_{o}}....\left( v \right)\left[ \text{From equation }\left( iii \right) \right]\]
Now, we know that any point on parabola has equal distances from its directrix and focus.
Similarly, here point \[P\] which is center of circle has equal distance \[\left[ {{r}_{o}}+{{R}_{o}} \right]\] from \[{{h}_{1}}=0\] and point \[Q\].
Therefore, here \[{{h}_{1}}\] is behaving as directrix and \[Q\] as a focus of parabola.
Hence, locus of \[P\] is parabola.
Note: Students must understand the physical significances of coordinate geometry and importance of theory, specifically parabola in the given question.
Last updated date: 28th Sep 2023
•
Total views: 365.7k
•
Views today: 11.65k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference between physical and chemical change class 11 chemistry CBSE

10 examples of law on inertia in our daily life

When was Bhagat Singh born A 25 September 1905 B 28 class 11 social science CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light
