
If A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$ then $(A^{-1})^{3}$ is equal to
A. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & 27\end{pmatrix}$
B. $\dfrac{1}{27}\begin{pmatrix}-1 & 26 \\ 0 & 27\end{pmatrix}$
C. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & -27\end{pmatrix}$
D. $\dfrac{1}{27}\begin{pmatrix}-1 & -26 \\ 0 & -27\end{pmatrix}$
Answer
232.8k+ views
Hint:
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

