# If $1 + 2 + 3 + ..... + n = k$, then ${1^3} + {2^3} + {3^3} + .......... + {n^3}$ is equal to

$

{\text{A}}{\text{. }}{k^2} \\

{\text{B}}{\text{. }}{k^3} \\

{\text{C}}{\text{. }}\dfrac{{k(k + 1)}}{2} \\

{\text{D}}{\text{. }}{\left( {k + 1} \right)^3} \\

$

Answer

Verified

364.2k+ views

Hint- Here, we will proceed by using the formula for the sum of first \[n\] natural numbers.

Given, $1 + 2 + 3 + ..... + n = k$

Since, we know that the sum of first \[n\] natural numbers i.e., \[1 + 2 + 3 + ..... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\]

\[ \Rightarrow k = \dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }} \to {\text{(1)}}\]

Also, the sum of cubes of first \[n\] natural numbers i.e., \[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\]

Using equation (1), we have

\[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = {k^2}\]

Therefore, the sum of cubes of first \[n\] natural numbers i.e., \[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {k^2}\]

Therefore, option A is correct.

Note- In these type of problems, we will simply be using some general formulas like sum of first \[n\] natural numbers, sum of squares of first \[n\] natural numbers and sum of cubes of first \[n\] natural numbers which will redirect us to the final answer.

Given, $1 + 2 + 3 + ..... + n = k$

Since, we know that the sum of first \[n\] natural numbers i.e., \[1 + 2 + 3 + ..... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\]

\[ \Rightarrow k = \dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }} \to {\text{(1)}}\]

Also, the sum of cubes of first \[n\] natural numbers i.e., \[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\]

Using equation (1), we have

\[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} = {k^2}\]

Therefore, the sum of cubes of first \[n\] natural numbers i.e., \[{1^3} + {2^3} + {3^3} + .......... + {n^3} = {k^2}\]

Therefore, option A is correct.

Note- In these type of problems, we will simply be using some general formulas like sum of first \[n\] natural numbers, sum of squares of first \[n\] natural numbers and sum of cubes of first \[n\] natural numbers which will redirect us to the final answer.

Last updated date: 24th Sep 2023

•

Total views: 364.2k

•

Views today: 4.64k