
What is the highest degree in the expansion of ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ -
(A)8
(B)7
(C)6
(D)5
Answer
232.8k+ views
Hint- Here in the expansion of the given function some terms will cancel out with each other.
As we know that according to binomial theorem of expansion, we have
${\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n} + {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ....... + {}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {}^n{C_n}{\left( b \right)^n}$
and ${\left( {a - b} \right)^n} = {}^n{C_0}{\left( a \right)^n} - {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} - ....... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{\left( b \right)^n}$
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Now consider ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(1)}} \\
$
Now consider ${\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(2)}} \\
$
Now using equations (1) and (2), we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} \\
+ {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} + {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {{}^5{C_0}{{\left( a \right)}^5}} \right] + 2\left[ {{}^5{C_2}{{\left( a \right)}^3}{{\left( b \right)}^2}} \right] + 2\left[ {{}^5{C_4}\left( a \right){{\left( b \right)}^4}} \right]{\text{ }} \to {\text{(3)}} \\
$
Also, $
{}^5{C_0} = \dfrac{{5!}}{{0!\left( {5 - 0} \right)!}} = \dfrac{{5!}}{{0!5!}} = 1\;\left[ {\because 0! = 1} \right],{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5.4.3!}}{{2.1!3!}} = \dfrac{{5 \times 4}}{2} = 10 \\
{}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!1!}} = \dfrac{5}{1} = 5 \\
$
Substituting above values and replacing $a$ by $x$ and $b$ by ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$, equation (3) becomes
$
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {1 \times {x^5}} \right] + 2\left[ {10 \times {x^3} \times {{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^2}} \right] + 2\left[ {5x{{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^4}} \right] \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2{x^5} + 20{x^3}\left( {{x^3} - 1} \right) + 10x{\left( {{x^3} - 1} \right)^2} = 2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right) \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + \left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right] = 2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4} \\
$
Clearly from the above equation, we can see that the highest degree in the expansion of the given function is 7.
Hence, option B is correct.
Note- These types of problems are solved by using binomial theorem of expansion and simplifying the given function and then finally checking the highest degree (highest power of variable $x$) of the polynomial obtained.
As we know that according to binomial theorem of expansion, we have
${\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n} + {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ....... + {}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {}^n{C_n}{\left( b \right)^n}$
and ${\left( {a - b} \right)^n} = {}^n{C_0}{\left( a \right)^n} - {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} - ....... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{\left( b \right)^n}$
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Now consider ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(1)}} \\
$
Now consider ${\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(2)}} \\
$
Now using equations (1) and (2), we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} \\
+ {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} + {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {{}^5{C_0}{{\left( a \right)}^5}} \right] + 2\left[ {{}^5{C_2}{{\left( a \right)}^3}{{\left( b \right)}^2}} \right] + 2\left[ {{}^5{C_4}\left( a \right){{\left( b \right)}^4}} \right]{\text{ }} \to {\text{(3)}} \\
$
Also, $
{}^5{C_0} = \dfrac{{5!}}{{0!\left( {5 - 0} \right)!}} = \dfrac{{5!}}{{0!5!}} = 1\;\left[ {\because 0! = 1} \right],{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5.4.3!}}{{2.1!3!}} = \dfrac{{5 \times 4}}{2} = 10 \\
{}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!1!}} = \dfrac{5}{1} = 5 \\
$
Substituting above values and replacing $a$ by $x$ and $b$ by ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$, equation (3) becomes
$
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {1 \times {x^5}} \right] + 2\left[ {10 \times {x^3} \times {{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^2}} \right] + 2\left[ {5x{{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^4}} \right] \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2{x^5} + 20{x^3}\left( {{x^3} - 1} \right) + 10x{\left( {{x^3} - 1} \right)^2} = 2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right) \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + \left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right] = 2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4} \\
$
Clearly from the above equation, we can see that the highest degree in the expansion of the given function is 7.
Hence, option B is correct.
Note- These types of problems are solved by using binomial theorem of expansion and simplifying the given function and then finally checking the highest degree (highest power of variable $x$) of the polynomial obtained.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

