What is the highest degree in the expansion of ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ -
(A)8
(B)7
(C)6
(D)5
Answer
366.3k+ views
Hint- Here in the expansion of the given function some terms will cancel out with each other.
As we know that according to binomial theorem of expansion, we have
${\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n} + {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ....... + {}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {}^n{C_n}{\left( b \right)^n}$
and ${\left( {a - b} \right)^n} = {}^n{C_0}{\left( a \right)^n} - {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} - ....... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{\left( b \right)^n}$
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Now consider ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(1)}} \\
$
Now consider ${\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(2)}} \\
$
Now using equations (1) and (2), we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} \\
+ {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} + {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {{}^5{C_0}{{\left( a \right)}^5}} \right] + 2\left[ {{}^5{C_2}{{\left( a \right)}^3}{{\left( b \right)}^2}} \right] + 2\left[ {{}^5{C_4}\left( a \right){{\left( b \right)}^4}} \right]{\text{ }} \to {\text{(3)}} \\
$
Also, $
{}^5{C_0} = \dfrac{{5!}}{{0!\left( {5 - 0} \right)!}} = \dfrac{{5!}}{{0!5!}} = 1\;\left[ {\because 0! = 1} \right],{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5.4.3!}}{{2.1!3!}} = \dfrac{{5 \times 4}}{2} = 10 \\
{}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!1!}} = \dfrac{5}{1} = 5 \\
$
Substituting above values and replacing $a$ by $x$ and $b$ by ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$, equation (3) becomes
$
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {1 \times {x^5}} \right] + 2\left[ {10 \times {x^3} \times {{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^2}} \right] + 2\left[ {5x{{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^4}} \right] \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2{x^5} + 20{x^3}\left( {{x^3} - 1} \right) + 10x{\left( {{x^3} - 1} \right)^2} = 2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right) \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + \left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right] = 2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4} \\
$
Clearly from the above equation, we can see that the highest degree in the expansion of the given function is 7.
Hence, option B is correct.
Note- These types of problems are solved by using binomial theorem of expansion and simplifying the given function and then finally checking the highest degree (highest power of variable $x$) of the polynomial obtained.
As we know that according to binomial theorem of expansion, we have
${\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n} + {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ....... + {}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {}^n{C_n}{\left( b \right)^n}$
and ${\left( {a - b} \right)^n} = {}^n{C_0}{\left( a \right)^n} - {}^n{C_1}{\left( a \right)^{n - 1}}\left( b \right) + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} - ....... + {\left( { - 1} \right)^{n - 1}}{}^n{C_{n - 1}}\left( a \right){\left( b \right)^{n - 1}} + {\left( { - 1} \right)^n}{}^n{C_n}{\left( b \right)^n}$
where ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Now consider ${\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a + b} \right)^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(1)}} \\
$
Now consider ${\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5}$ and here replace $x$ by $a$ and ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$ by $b$, we have
$
{\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^{5 - 1}}\left( b \right) + {}^5{C_2}{\left( a \right)^{5 - 2}}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^{5 - 3}}{\left( b \right)^3} + {}^5{C_4}{\left( a \right)^{5 - 4}}{\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {\left( {a - b} \right)^5} = {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5}{\text{ }} \to {\text{(2)}} \\
$
Now using equations (1) and (2), we have
$
{\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = {}^5{C_0}{\left( a \right)^5} + {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} + {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} \\
+ {}^5{C_4}\left( a \right){\left( b \right)^4} + {}^5{C_5}{\left( b \right)^5} + {}^5{C_0}{\left( a \right)^5} - {}^5{C_1}{\left( a \right)^4}\left( b \right) + {}^5{C_2}{\left( a \right)^3}{\left( b \right)^2} - {}^5{C_3}{\left( a \right)^2}{\left( b \right)^3} + {}^5{C_4}\left( a \right){\left( b \right)^4} - {}^5{C_5}{\left( b \right)^5} \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {{}^5{C_0}{{\left( a \right)}^5}} \right] + 2\left[ {{}^5{C_2}{{\left( a \right)}^3}{{\left( b \right)}^2}} \right] + 2\left[ {{}^5{C_4}\left( a \right){{\left( b \right)}^4}} \right]{\text{ }} \to {\text{(3)}} \\
$
Also, $
{}^5{C_0} = \dfrac{{5!}}{{0!\left( {5 - 0} \right)!}} = \dfrac{{5!}}{{0!5!}} = 1\;\left[ {\because 0! = 1} \right],{}^5{C_2} = \dfrac{{5!}}{{2!\left( {5 - 2} \right)!}} = \dfrac{{5.4.3!}}{{2.1!3!}} = \dfrac{{5 \times 4}}{2} = 10 \\
{}^5{C_4} = \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} = \dfrac{{5.4!}}{{4!1!}} = \dfrac{5}{1} = 5 \\
$
Substituting above values and replacing $a$ by $x$ and $b$ by ${\left( {{x^3} - 1} \right)^{\dfrac{1}{2}}}$, equation (3) becomes
$
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2\left[ {1 \times {x^5}} \right] + 2\left[ {10 \times {x^3} \times {{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^2}} \right] + 2\left[ {5x{{\left( {{{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right)}^4}} \right] \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + {\left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} = 2{x^5} + 20{x^3}\left( {{x^3} - 1} \right) + 10x{\left( {{x^3} - 1} \right)^2} = 2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right) \\
\Rightarrow {\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right]^5} + \left[ {x - {{\left( {{x^3} - 1} \right)}^{\dfrac{1}{2}}}} \right] = 2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4} \\
$
Clearly from the above equation, we can see that the highest degree in the expansion of the given function is 7.
Hence, option B is correct.
Note- These types of problems are solved by using binomial theorem of expansion and simplifying the given function and then finally checking the highest degree (highest power of variable $x$) of the polynomial obtained.
Last updated date: 27th Sep 2023
•
Total views: 366.3k
•
Views today: 4.66k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

How many crores make 10 million class 7 maths CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
