
Given \[{a^x} = {b^y} = {c^z} = {d^u}\] and \[a,b,c,d\] are in G.P., then \[x,y,z,u\] are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
233.1k+ views
Hint:
We begin by remembering that a, b, c and d are in G.P (Geometric Progression), and assuming \[b = ar,c = a{r^2},d = a{r^3}\] and proceed by taking logarithms for the stated information to solve further. Ad we equate the logarithmic equation to k and then solve each term with respect to k to determine the required progression.
Formula used:
if a, b, c and d are in G.P (Geometric Progression), and assuming
\[b = ar,c = a{r^2},d = a{r^3}\]
\[ \Rightarrow (\log ab) = (\log a + \log b) \]
Complete step-by-step solution:
To be able to answer this question, one must be familiar with concepts such as progressions. Take care of the calculations so that you are certain of the final result. We need to understand concepts of logarithms.
We have been given in the question that,
The sequence \[{a^x} = {b^y} = {c^z} = {d^u}\]and\[a,b,c,d\] are in Geometric progression.
Since,\[a,b,c,d\] are in Geometric progression.
Let us assume that,
\[b = ar,c = a{r^2},d = a{r^3}\]
Taking logarithm for the equation\[b = {\rm{ ar }}\quad c = a{r^2}\quad d = a{r^3}\], we get
\[ \Rightarrow x(\log a) = y(\log a + \log r) = z(\log a + 2\log r) = u(\log a + 3\log r) = k\]--- (1)
Now, we have to solve each term with k from the above equation:
Therefore, for each term of the equation (1), we have to equate the sequence with \[k\]:
\[x = \frac{k}{{\log a}}; y = \frac{k}{{\log a + \log r}};z = \frac{k}{{\log a + 2\log r}}; u = \frac{k}{{\log a + 3\log r}}\]
Since, \[\log a,\log a + \log r,\log a + 2\log r,\log a + 3\log r\] are in Arithmetic progression
Therefore, \[{\rm{x}},{\rm{y}},{\rm{z}},{\rm{u}}\]are in Harmonic progression.
Hence, the option C is correct.
Note:
The problem can also be solved by assuming the common ratio of \[a\],\[b\] and \[c\] as \[r\]. To find the roots of the quadratic equation \[a{x^2} + 2bx + c = 0\], we make substitution \[b = ar,c = a{r^2}\]. We then substitute those roots in the quadratic equation and solve the problem again. We should not choose numbers at random for \[abc\] because this complicates the calculation.
We begin by remembering that a, b, c and d are in G.P (Geometric Progression), and assuming \[b = ar,c = a{r^2},d = a{r^3}\] and proceed by taking logarithms for the stated information to solve further. Ad we equate the logarithmic equation to k and then solve each term with respect to k to determine the required progression.
Formula used:
if a, b, c and d are in G.P (Geometric Progression), and assuming
\[b = ar,c = a{r^2},d = a{r^3}\]
\[ \Rightarrow (\log ab) = (\log a + \log b) \]
Complete step-by-step solution:
To be able to answer this question, one must be familiar with concepts such as progressions. Take care of the calculations so that you are certain of the final result. We need to understand concepts of logarithms.
We have been given in the question that,
The sequence \[{a^x} = {b^y} = {c^z} = {d^u}\]and\[a,b,c,d\] are in Geometric progression.
Since,\[a,b,c,d\] are in Geometric progression.
Let us assume that,
\[b = ar,c = a{r^2},d = a{r^3}\]
Taking logarithm for the equation\[b = {\rm{ ar }}\quad c = a{r^2}\quad d = a{r^3}\], we get
\[ \Rightarrow x(\log a) = y(\log a + \log r) = z(\log a + 2\log r) = u(\log a + 3\log r) = k\]--- (1)
Now, we have to solve each term with k from the above equation:
Therefore, for each term of the equation (1), we have to equate the sequence with \[k\]:
\[x = \frac{k}{{\log a}}; y = \frac{k}{{\log a + \log r}};z = \frac{k}{{\log a + 2\log r}}; u = \frac{k}{{\log a + 3\log r}}\]
Since, \[\log a,\log a + \log r,\log a + 2\log r,\log a + 3\log r\] are in Arithmetic progression
Therefore, \[{\rm{x}},{\rm{y}},{\rm{z}},{\rm{u}}\]are in Harmonic progression.
Hence, the option C is correct.
Note:
The problem can also be solved by assuming the common ratio of \[a\],\[b\] and \[c\] as \[r\]. To find the roots of the quadratic equation \[a{x^2} + 2bx + c = 0\], we make substitution \[b = ar,c = a{r^2}\]. We then substitute those roots in the quadratic equation and solve the problem again. We should not choose numbers at random for \[abc\] because this complicates the calculation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

