
Find whether ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ is:
(a) $<{{\left( 101 \right)}^{50}}$
(b) $<\left( 101 \right)$
(c) $>{{\left( 101 \right)}^{50}}$
(d) $>\left( 101 \right)$
Answer
232.8k+ views
Hint: Use binomial expansion to expand ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ . Then subtract the two expressions obtained to get a new expression. Use the elements of the new expression to arrive at a relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

