
Find the value of $\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}$ when ${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
a)$ln\dfrac{3}{2}$
b)$ln\dfrac{9}{2}$
c)Greater than one
d)Less than two
Answer
217.8k+ views
Consider the given expression,
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
${{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Now we will apply limits, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Dividing numerator and denominator by n2, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)$
Now let,
$\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx$
Let’s find the limits,
When $r=1\Rightarrow x=0$
When $r=n\Rightarrow x=1$
Considering these values the summation can be written as integral form. We get,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)$
Now we will apply partial dfraction to simplify the above equation.
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)$
$\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)$
Now put (x=-1), we get
$\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)$
$\Rightarrow 1=A\left( -1 \right)+0$
$\Rightarrow A=-1$
Now put $x=-\dfrac{1}{2}$, we get
$\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)$
$\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)$
$\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)$
$\Rightarrow B=2$
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}$
Substituting this in equation (ii), we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx$
Applying linearity, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx$
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}$
Applying the upper bound and lower bound, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]$
But we know, $\ln 1=0$, so we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]$
. $\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2$
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}$
Substituting this value in equation (i), we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}$
As the RHS is free of variable, so we can remove the limit, so we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}$
Hence, the correct option for the given question is option (a).
Note - The following equation $\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}$ can be solved by partial fraction method as well as substitution method. Among both, the substitution method is the easiest one.
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
${{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Now we will apply limits, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Dividing numerator and denominator by n2, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)$
Now let,
$\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx$
Let’s find the limits,
When $r=1\Rightarrow x=0$
When $r=n\Rightarrow x=1$
Considering these values the summation can be written as integral form. We get,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)$
Now we will apply partial dfraction to simplify the above equation.
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)$
$\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)$
Now put (x=-1), we get
$\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)$
$\Rightarrow 1=A\left( -1 \right)+0$
$\Rightarrow A=-1$
Now put $x=-\dfrac{1}{2}$, we get
$\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)$
$\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)$
$\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)$
$\Rightarrow B=2$
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}$
Substituting this in equation (ii), we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx$
Applying linearity, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx$
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}$
Applying the upper bound and lower bound, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]$
But we know, $\ln 1=0$, so we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]$
. $\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2$
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}$
Substituting this value in equation (i), we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}$
As the RHS is free of variable, so we can remove the limit, so we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}$
Hence, the correct option for the given question is option (a).
Note - The following equation $\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}$ can be solved by partial fraction method as well as substitution method. Among both, the substitution method is the easiest one.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

