Find the value of $\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}$ when ${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
a)$ln\dfrac{3}{2}$
b)$ln\dfrac{9}{2}$
c)Greater than one
d)Less than two
Last updated date: 28th Mar 2023
•
Total views: 316.5k
•
Views today: 7.92k
Answer
316.5k+ views
Consider the given expression,
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
${{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Now we will apply limits, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Dividing numerator and denominator by n2, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)$
Now let,
$\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx$
Let’s find the limits,
When $r=1\Rightarrow x=0$
When $r=n\Rightarrow x=1$
Considering these values the summation can be written as integral form. We get,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)$
Now we will apply partial dfraction to simplify the above equation.
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)$
$\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)$
Now put (x=-1), we get
$\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)$
$\Rightarrow 1=A\left( -1 \right)+0$
$\Rightarrow A=-1$
Now put $x=-\dfrac{1}{2}$, we get
$\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)$
$\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)$
$\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)$
$\Rightarrow B=2$
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}$
Substituting this in equation (ii), we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx$
Applying linearity, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx$
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}$
Applying the upper bound and lower bound, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]$
But we know, $\ln 1=0$, so we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]$
. $\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2$
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}$
Substituting this value in equation (i), we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}$
As the RHS is free of variable, so we can remove the limit, so we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}$
Hence, the correct option for the given question is option (a).
Note - The following equation $\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}$ can be solved by partial fraction method as well as substitution method. Among both, the substitution method is the easiest one.
${{S}_{n}}=\dfrac{n}{\left( n+1 \right)\left( n+2 \right)}+\dfrac{n}{\left( n+2 \right)\left( n+4 \right)}+\dfrac{n}{\left( n+3 \right)\left( n+6 \right)}+\ldots +\dfrac{1}{6n}$
This can be converted to summation as,
${{S}_{n}}=\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Now we will apply limits, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{n}{\left( n+r \right)\left( n+2r \right)}$
Dividing numerator and denominator by n2, we get
$\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{n}{{{n}^{2}}}}{\dfrac{\left( n+r \right)}{n}\dfrac{\left( n+2r \right)}{n}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( \dfrac{n}{n}+\dfrac{r}{n} \right)\left( \dfrac{n}{n}+\dfrac{2r}{n} \right)}\]
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}\ldots \ldots \ldots .\left( i \right)$
Now let,
$\dfrac{r}{n}=x\Rightarrow \dfrac{1}{n}=dx$
Let’s find the limits,
When $r=1\Rightarrow x=0$
When $r=n\Rightarrow x=1$
Considering these values the summation can be written as integral form. We get,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}\ldots \ldots \left( ii \right)$
Now we will apply partial dfraction to simplify the above equation.
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{A}{1+x}+\dfrac{B}{1+2x}\ldots ..\left( iii \right)$
$\Rightarrow 1=A\left( 1+2x \right)+B\left( 1+x \right)$
Now put (x=-1), we get
$\Rightarrow 1=A\left( 1+2\left( -1 \right) \right)+B\left( 1-1 \right)$
$\Rightarrow 1=A\left( -1 \right)+0$
$\Rightarrow A=-1$
Now put $x=-\dfrac{1}{2}$, we get
$\Rightarrow 1=A\left( 1+2\left( -\dfrac{1}{2} \right) \right)+B\left( 1-\dfrac{1}{2} \right)$
$\Rightarrow 1=A\left( 1-1 \right)+B\left( \dfrac{2-1}{2} \right)$
$\Rightarrow 1=0+B\left( \dfrac{1}{2} \right)$
$\Rightarrow B=2$
Now substituting the value of ‘A’ and ‘B’ in equation (iii), we get
$\dfrac{1}{\left( 1+x \right)\left( 1+2x \right)}=\dfrac{-1}{1+x}+\dfrac{2}{1+2x}$
Substituting this in equation (ii), we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\underset{0}{\overset{1}{\mathop \int }}\,\left[ \dfrac{2}{1+2x}-\dfrac{1}{1+x} \right]dx$
Applying linearity, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+2x}dx-\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{1}{1+x}dx$
But we know, $\mathop{\int }^{}\dfrac{1}{u}=\ln \left( u \right)$, so above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+2x \right)dx \right]-\left[ \ln \left( 1+x \right)\underset{0}{\overset{1}{\mathop \int }}\,\left( 1+x \right)dx \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=2\left[ \ln \left( 1+2x \right)\left( \dfrac{1}{2} \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right)\left( 1 \right) \right]_{0}^{1}$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2x \right) \right]_{0}^{1}-\left[ \ln \left( 1+x \right) \right]_{0}^{1}$
Applying the upper bound and lower bound, we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 1+2\left( 1 \right) \right)-\ln \left( 1+2\left( 0 \right) \right) \right]-\left[ \ln \left( 1+\left( 1 \right) \right)-\ln \left( 1+\left( 0 \right) \right) \right]$
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-\ln \left( 1 \right) \right]-\left[ \ln \left( 2 \right)-\ln \left( 1 \right) \right]$
But we know, $\ln 1=0$, so we get
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\left[ \ln \left( 3 \right)-0 \right]-\left[ \ln \left( 2 \right)-0 \right]$
. $\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln 3-\ln 2$
We know, $\log a-\log b=\log \left( \dfrac{a}{b} \right)$, so the above equation becomes,
$\underset{r=1}{\overset{n}{\mathop \sum }}\,\dfrac{\dfrac{1}{n}}{\left( 1+\dfrac{r}{n} \right)\left( 1+\dfrac{2r}{n} \right)}=\ln \dfrac{3}{2}$
Substituting this value in equation (i), we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\ln \dfrac{3}{2}$
As the RHS is free of variable, so we can remove the limit, so we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\ln \dfrac{3}{2}$
Hence, the correct option for the given question is option (a).
Note - The following equation $\underset{0}{\overset{1}{\mathop \int }}\,\dfrac{dx}{\left( 1+x \right)\left( 1+2x \right)}$ can be solved by partial fraction method as well as substitution method. Among both, the substitution method is the easiest one.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
