
Find the value of the given integral $\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $
$
{\text{A}}{\text{. 2}}\sqrt {{\text{1 + sinx}}} + {\text{C}} \\
{\text{B}}{\text{. 2}}\sqrt {{\text{1 - sinx}}} + {\text{C}} \\
{\text{C}}{\text{. 2}}\sqrt {{\text{1 - 2sinx}}} + {\text{C}} \\
{\text{D}}{\text{. 2}}\sqrt {{\text{1 - sin2x}}} + {\text{C}} \\
$
Answer
615.6k+ views
Hint:To compute the value of the integral, we use the trigonometric identity ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, we rearrange the terms inside the square root by using algebraic formula. And compute the integral values of sin and cos functions and add them.
Complete step-by-step answer:
Given Data, $\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $
We know, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$.
Also we know${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}$.
Using these identities we transform the equation as
$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - sinx}}} {\text{dx}}} $
⟹$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - 2sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} {\text{dx}}} $
= $\int {\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} } {\text{dx}}$
= $\int {\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)} {\text{dx}}$
= $\int {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{dx + }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}{\text{dx}}} } $ -- (1)
We know$\int {{\text{sinx}}} = - {\text{cosx, hence }}\int {{\text{sin}}\dfrac{{\text{x}}}{2}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$.
Similarly we know, $\int {{\text{cosx}}} = {\text{sinx, hence }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$
Hence, equation (1) becomes,
⟹$\dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$+$\dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$+C
⟹$ - 2{\text{cos}}\dfrac{{\text{x}}}{2} + 2{\text{sin}}\dfrac{{\text{x}}}{2} + {\text{C}}$ (where C is the integration constant).
$
\Rightarrow 2\left[ {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right] + {\text{C}} \\
{\text{We can write this as,}} \\
\Rightarrow {\text{2}}\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} + {\text{C}} \\
\Rightarrow {\text{2}}\sqrt {\left( {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2} + {\text{co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2} - 2{\text{sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} \right)} + {\text{C}} \\
$ -- We used ${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$
We know, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$. Hence the equation becomes,
$ \Rightarrow 2\sqrt {1 - {\text{sinx}}} + {\text{C}}$
Therefore$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$2\sqrt {1 - {\text{sinx}}} + {\text{C}}$. Hence Option B is the correct answer.
Note – In order to solve this kind of problems the key is to represent the given integral as a sum of the results of two or more integral values as we know the integral values of sin and cos functions, also as the angle inside the functions is$\dfrac{{\text{x}}}{2}$, we should be careful while applying the integration formula. Having adequate knowledge in the trigonometric identities of sin and cos functions like${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$is required. Basic algebraic formulae like ${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}$ and ${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$ are also used.
Complete step-by-step answer:
Given Data, $\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $
We know, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$.
Also we know${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}$.
Using these identities we transform the equation as
$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - sinx}}} {\text{dx}}} $
⟹$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - 2sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} {\text{dx}}} $
= $\int {\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} } {\text{dx}}$
= $\int {\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)} {\text{dx}}$
= $\int {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{dx + }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}{\text{dx}}} } $ -- (1)
We know$\int {{\text{sinx}}} = - {\text{cosx, hence }}\int {{\text{sin}}\dfrac{{\text{x}}}{2}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$.
Similarly we know, $\int {{\text{cosx}}} = {\text{sinx, hence }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$
Hence, equation (1) becomes,
⟹$\dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$+$\dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}$+C
⟹$ - 2{\text{cos}}\dfrac{{\text{x}}}{2} + 2{\text{sin}}\dfrac{{\text{x}}}{2} + {\text{C}}$ (where C is the integration constant).
$
\Rightarrow 2\left[ {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right] + {\text{C}} \\
{\text{We can write this as,}} \\
\Rightarrow {\text{2}}\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} + {\text{C}} \\
\Rightarrow {\text{2}}\sqrt {\left( {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2} + {\text{co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2} - 2{\text{sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} \right)} + {\text{C}} \\
$ -- We used ${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$
We know, ${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$. Hence the equation becomes,
$ \Rightarrow 2\sqrt {1 - {\text{sinx}}} + {\text{C}}$
Therefore$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $$2\sqrt {1 - {\text{sinx}}} + {\text{C}}$. Hence Option B is the correct answer.
Note – In order to solve this kind of problems the key is to represent the given integral as a sum of the results of two or more integral values as we know the integral values of sin and cos functions, also as the angle inside the functions is$\dfrac{{\text{x}}}{2}$, we should be careful while applying the integration formula. Having adequate knowledge in the trigonometric identities of sin and cos functions like${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$is required. Basic algebraic formulae like ${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}$ and ${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$ are also used.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

