   Question Answers

# Find the value of the given integral $\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} ${\text{A}}{\text{. 2}}\sqrt {{\text{1 + sinx}}} + {\text{C}} \\ {\text{B}}{\text{. 2}}\sqrt {{\text{1 - sinx}}} + {\text{C}} \\ {\text{C}}{\text{. 2}}\sqrt {{\text{1 - 2sinx}}} + {\text{C}} \\ {\text{D}}{\text{. 2}}\sqrt {{\text{1 - sin2x}}} + {\text{C}} \\  Answer Verified Hint:To compute the value of the integral, we use the trigonometric identity {\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, we rearrange the terms inside the square root by using algebraic formula. And compute the integral values of sin and cos functions and add them. Complete step-by-step answer: Given Data, \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} We know, {\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, {\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}. Also we know{\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}. Using these identities we transform the equation as \int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}}$\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - sinx}}} {\text{dx}}}$
⟹$\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}} $\int {\sqrt {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2}{\text{ + co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2}{\text{ - 2sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} {\text{dx}}} = \int {\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} } {\text{dx}} = \int {\left( {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{ + cos}}\dfrac{{\text{x}}}{2}} \right)} {\text{dx}} = \int {{\text{sin}}\dfrac{{\text{x}}}{2}{\text{dx + }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}{\text{dx}}} } -- (1) We know\int {{\text{sinx}}} = - {\text{cosx, hence }}\int {{\text{sin}}\dfrac{{\text{x}}}{2}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}. Similarly we know, \int {{\text{cosx}}} = {\text{sinx, hence }}\int {{\text{cos}}\dfrac{{\text{x}}}{2}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\dfrac{{\text{x}}}{2}} \right)}} = \dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}} Hence, equation (1) becomes, ⟹\dfrac{{ - {\text{cos}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}+\dfrac{{{\text{sin}}\dfrac{{\text{x}}}{2}}}{{\dfrac{1}{2}}}+C ⟹ - 2{\text{cos}}\dfrac{{\text{x}}}{2} + 2{\text{sin}}\dfrac{{\text{x}}}{2} + {\text{C}} (where C is the integration constant). \Rightarrow 2\left[ {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right] + {\text{C}} \\ {\text{We can write this as,}} \\ \Rightarrow {\text{2}}\sqrt {{{\left( {{\text{sin}}\dfrac{{\text{x}}}{2} - {\text{cos}}\dfrac{{\text{x}}}{2}} \right)}^2}} + {\text{C}} \\ \Rightarrow {\text{2}}\sqrt {\left( {{\text{si}}{{\text{n}}^2}\dfrac{{\text{x}}}{2} + {\text{co}}{{\text{s}}^2}\dfrac{{\text{x}}}{2} - 2{\text{sin}}\dfrac{{\text{x}}}{2}{\text{cos}}\dfrac{{\text{x}}}{2}} \right)} + {\text{C}} \\ -- We used {\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}} We know, {\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1, {\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}. Hence the equation becomes, \Rightarrow 2\sqrt {1 - {\text{sinx}}} + {\text{C}} Therefore\int {\sqrt {1{\text{ - sinx}}} {\text{dx = }}}$2\sqrt {1 - {\text{sinx}}} + {\text{C}}$. Hence Option B is the correct answer.

Note – In order to solve this kind of problems the key is to represent the given integral as a sum of the results of two or more integral values as we know the integral values of sin and cos functions, also as the angle inside the functions is$\dfrac{{\text{x}}}{2}$, we should be careful while applying the integration formula. Having adequate knowledge in the trigonometric identities of sin and cos functions like${\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1$, ${\text{sin2}}\theta {\text{ = 2sin}}\dfrac{\theta }{2}{\text{cos}}\dfrac{\theta }{2}$is required. Basic algebraic formulae like ${\left( {{\text{a + b}}} \right)^2} = {{\text{a}}^2} + {{\text{b}}^2}{\text{ + 2ab}}$ and ${\left( {{\text{a - b}}} \right)^2} = {{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ - 2ab}}$ are also used.
View Notes
To Find the Weight of a Given Body Using Parallelogram Law of Vectors  Indefinite Integral Formula  Relation Between the Length of a Given Wire and Tension for Constant Frequency Using Sonometer  Value of g  The Idea of Time  What are the Functions of the Human Skeletal System?  The Ghat of the Only World Summary  Value of Sin 180  Value of Cos 120  The Perimeter of Rectangle Formula  Important Questions for CBSE Class 12 Chemistry Chapter 1 - The Solid State  Important Questions for CBSE Class 11 English Snapshots Chapter 1 - The Summer of the Beautiful White Horse  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 1 - The Earth In The Solar System  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  Important Questions for CBSE Class 8 English Honeydew Chapter 1 - The Best Christmas Present in the World  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 3 - Motions of the Earth  Important Questions for CBSE Class 12 Micro Economics Chapter 4 - Theory of the Firm under Perfect Competition  Important Questions for CBSE Class 11 Biology Chapter 1 - The Living World  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 5 - Major Domains Of The Earth  Important Questions for CBSE Class 12 Maths Chapter 1 - Relations and Functions  Maths Question Paper for CBSE Class 12 - 2016 Set 1 E  Maths Question Paper for CBSE Class 12 - 2016 Set 1 S  Maths Question Paper for CBSE Class 12 - 2016 Set 1 C  Maths Question Paper for CBSE Class 12 - 2016 Set 1 N  CBSE Class 12 Maths Question Paper 2020  Maths Question Paper for CBSE Class 12 - 2013  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 E  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 S  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 N  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 C  RS Aggarwal Class 12 Solutions Chapter-12 Indefinite Integral  RD Sharma Class 12 Solutions Chapter 1 - Relations (Ex 1.1) Exercise 1.1  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.1 (Ex 1.1)  RD Sharma Class 12 Solutions Chapter 1 - Relations (Ex 1.2) Exercise 1.2  RD Sharma Class 12 Solutions Chapter 12 - Higher Order Derivatives (Ex 12.1) Exercise 12.1  RD Sharma Class 12 Maths Solutions Chapter 15 - Mean Value Theorems  NCERT Solutions for Class 12 English Vistas Chapter 3 - Journey to the end of the Earth  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.3 (Ex 1.3)  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.4 (Ex 1.4)  NCERT Solutions for Class 12 Maths Chapter 12 Linear Programming (Ex 12.1) Exercise 12.1  