
Find the value of ‘\[{\tan ^{ - 4}}A + {\cot ^{ - 4}}A\]’ given that ‘\[\tan A + \cot A = 4\]’.
A. \[110\]
B. \[191\]
C. \[80\]
D. \[194\]
Answer
232.8k+ views
Hint: First squaring both sides of the given equation \[\tan A + \cot A = 4\] and after that simplifying this and again squaring this and we get the required value of \[{\tan ^{ - 4}}A + {\cot ^{ - 4}}A\].
Formula Used:
Square formula of algebra \[{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB\]
Multiplication of formula of trigonometry \[\tan x \times \cot x = 1\]
Properties of \[\tan x\] and \[\cot x\] , \[\tan x = \dfrac{1}{{\cot x}}\] and \[\cot x = \dfrac{1}{{\tan x}}\]
Complete step by step solution:
Given \[\tan A + \cot A = 4\]
On squaring both the sides, we get:
\[{\left( {\tan A + \cot A} \right)^2} = {\tan ^2}A + {\cot ^2}A + 2 \times \tan A \times \cot A\]
We know that \[\tan A \times \cot A = 1\], substituting this and we get
\[ \Rightarrow {\left( {\tan A + \cot A} \right)^2} = {\tan ^2}A + {\cot ^2}A + 2 \times 1\]
Since, \[\tan A + \cot A = 4\], we have:
\[ \Rightarrow {\left( 4 \right)^2} = {\tan ^2}A + {\cot ^2}A + 2\]
\[ \Rightarrow 16 = {\tan ^2}A + {\cot ^2}A + 2\]
\[ \Rightarrow 14 = {\tan ^2}A + {\cot ^2}A\];
Again, squaring both the sides of the above equation, we get:
\[ \Rightarrow {\left( {14} \right)^2} = {\tan ^4}A + {\cot ^4}A + 2 \times {\tan ^2}A \times {\cot ^2}A\]………..(1)
We know that \[\tan A \times \cot A = 1\],
Squaring both sides of \[\tan A \times \cot A = 1\] and we get
\[ \Rightarrow {\left( {\tan A \times \cot A} \right)^2} = {1^2}\]
\[ \Rightarrow {\tan ^2}A \times {\cot ^2}A = 1\]
Substituting this in equation (1) and we get
\[ \Rightarrow {\left( {14} \right)^2} = {\tan ^4}A + {\cot ^4}A + 2 \times 1\]
\[ \Rightarrow 194 = {\tan ^4}A + {\cot ^4}A\]
Using the properties of \[\tan A\] and \[\cot A\] , we get
\[ \Rightarrow \left( {\dfrac{1}{{{{\cot }^{ - 4}}A}}} \right) + \left( {\dfrac{1}{{{{\tan }^{ - 4}}A}}} \right) = 194\]
\[ \Rightarrow \left( {\dfrac{{{{\tan }^{ - 4}}A + {{\cot }^{ - 4}}A}}{{{{\tan }^{ - 4}}A \times {{\cot }^{ - 4}}A}}} \right) = 194\]
Since \[\tan A \times \cot A = 1\] , then \[{\tan ^{ - 4}}A \times {\cot ^{ - 4}}A = 1\]
\[ \Rightarrow \left( {\dfrac{{{{\tan }^{ - 4}}A + {{\cot }^{ - 4}}A}}{1}} \right) = 194\]
\[ \Rightarrow {\tan ^{ - 4}}A + {\cot ^{ - 4}}A = 194\]
\[ = 194\]
The correct answer is option D.
Note: Students make mistakes as they try to solve \[{\tan ^{ - 4}}A + {\cot ^{ - 4}}A\] directly. But if we try to solve this equation directly then it will be complex to solve. So this is not a good method to solve this question.
Formula Used:
Square formula of algebra \[{\left( {A + B} \right)^2} = {A^2} + {B^2} + 2AB\]
Multiplication of formula of trigonometry \[\tan x \times \cot x = 1\]
Properties of \[\tan x\] and \[\cot x\] , \[\tan x = \dfrac{1}{{\cot x}}\] and \[\cot x = \dfrac{1}{{\tan x}}\]
Complete step by step solution:
Given \[\tan A + \cot A = 4\]
On squaring both the sides, we get:
\[{\left( {\tan A + \cot A} \right)^2} = {\tan ^2}A + {\cot ^2}A + 2 \times \tan A \times \cot A\]
We know that \[\tan A \times \cot A = 1\], substituting this and we get
\[ \Rightarrow {\left( {\tan A + \cot A} \right)^2} = {\tan ^2}A + {\cot ^2}A + 2 \times 1\]
Since, \[\tan A + \cot A = 4\], we have:
\[ \Rightarrow {\left( 4 \right)^2} = {\tan ^2}A + {\cot ^2}A + 2\]
\[ \Rightarrow 16 = {\tan ^2}A + {\cot ^2}A + 2\]
\[ \Rightarrow 14 = {\tan ^2}A + {\cot ^2}A\];
Again, squaring both the sides of the above equation, we get:
\[ \Rightarrow {\left( {14} \right)^2} = {\tan ^4}A + {\cot ^4}A + 2 \times {\tan ^2}A \times {\cot ^2}A\]………..(1)
We know that \[\tan A \times \cot A = 1\],
Squaring both sides of \[\tan A \times \cot A = 1\] and we get
\[ \Rightarrow {\left( {\tan A \times \cot A} \right)^2} = {1^2}\]
\[ \Rightarrow {\tan ^2}A \times {\cot ^2}A = 1\]
Substituting this in equation (1) and we get
\[ \Rightarrow {\left( {14} \right)^2} = {\tan ^4}A + {\cot ^4}A + 2 \times 1\]
\[ \Rightarrow 194 = {\tan ^4}A + {\cot ^4}A\]
Using the properties of \[\tan A\] and \[\cot A\] , we get
\[ \Rightarrow \left( {\dfrac{1}{{{{\cot }^{ - 4}}A}}} \right) + \left( {\dfrac{1}{{{{\tan }^{ - 4}}A}}} \right) = 194\]
\[ \Rightarrow \left( {\dfrac{{{{\tan }^{ - 4}}A + {{\cot }^{ - 4}}A}}{{{{\tan }^{ - 4}}A \times {{\cot }^{ - 4}}A}}} \right) = 194\]
Since \[\tan A \times \cot A = 1\] , then \[{\tan ^{ - 4}}A \times {\cot ^{ - 4}}A = 1\]
\[ \Rightarrow \left( {\dfrac{{{{\tan }^{ - 4}}A + {{\cot }^{ - 4}}A}}{1}} \right) = 194\]
\[ \Rightarrow {\tan ^{ - 4}}A + {\cot ^{ - 4}}A = 194\]
\[ = 194\]
The correct answer is option D.
Note: Students make mistakes as they try to solve \[{\tan ^{ - 4}}A + {\cot ^{ - 4}}A\] directly. But if we try to solve this equation directly then it will be complex to solve. So this is not a good method to solve this question.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

