
Find the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ }$
from the options given below
A. 0
B. 1
C. 2
D. 3
Answer
232.8k+ views
Hint-Here, let us try to solve this question by making use of the formula
$\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and solve
By making use of the formula $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $,we
can write
$\tan {89^ \circ }$= $\tan ({90^ \circ } - {1^ \circ }) = \cot {1^ \circ }$
Similarly we can write
tan${88^ \circ }$ =$\tan ({90^ \circ } - {2^ \circ }) = \cot {2^ \circ }$
On proceeding in a similar manner we can write the value of tan in terms of cot upto
$\tan {46^ \circ }$ and the value of $\tan {45^ \circ }$ is retained as it is and not converted to
cot. This is
because if we pair $\tan {89^ \circ }$,$\tan {1^ \circ }$ ; $\tan {2^ \circ },\tan {88^ \circ }$ ;we can pair them up to $\tan {44^ \circ }\tan {46^ \circ }$
and finally $\tan {45^ \circ }$ will remain unpaired with any other element.
So, now the equation becomes $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ }\cot {2^ \circ
}).....(\tan {44^ \circ }\cot {44^ \circ })(\tan {45^ \circ })$
Since tan and cot are reciprocals of each other $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ
}\cot {2^ \circ })...$ will cancel out
and will become 1 and the value of $\tan {45^ \circ }$ will also become 1.
So, the equation will now be equal to (1)(1)……..(1)(1)=1
So, therefore the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ
}$=1 $$ $$
Note: To solve these kind of problems we will make use of the complementary angle formula
of the trigonometric ratios
$\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and solve
By making use of the formula $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $,we
can write
$\tan {89^ \circ }$= $\tan ({90^ \circ } - {1^ \circ }) = \cot {1^ \circ }$
Similarly we can write
tan${88^ \circ }$ =$\tan ({90^ \circ } - {2^ \circ }) = \cot {2^ \circ }$
On proceeding in a similar manner we can write the value of tan in terms of cot upto
$\tan {46^ \circ }$ and the value of $\tan {45^ \circ }$ is retained as it is and not converted to
cot. This is
because if we pair $\tan {89^ \circ }$,$\tan {1^ \circ }$ ; $\tan {2^ \circ },\tan {88^ \circ }$ ;we can pair them up to $\tan {44^ \circ }\tan {46^ \circ }$
and finally $\tan {45^ \circ }$ will remain unpaired with any other element.
So, now the equation becomes $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ }\cot {2^ \circ
}).....(\tan {44^ \circ }\cot {44^ \circ })(\tan {45^ \circ })$
Since tan and cot are reciprocals of each other $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ
}\cot {2^ \circ })...$ will cancel out
and will become 1 and the value of $\tan {45^ \circ }$ will also become 1.
So, the equation will now be equal to (1)(1)……..(1)(1)=1
So, therefore the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ
}$=1 $$ $$
Note: To solve these kind of problems we will make use of the complementary angle formula
of the trigonometric ratios
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

