
Find the value of \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \]
A. \[ - 1\]
B. \[0\]
C. \[1\]
D. None of these
Answer
232.8k+ views
Hint: We use the L’ Hospital rule to solve this question. L’ Hospital rule states that if \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x = a\] plugs in, then \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
To compute the limit, all we have to do is take the derivative of the numerator as well as the denominator.
Formula used:
We have been using the following formula:
1. \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
2. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
3. \[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
Complete step-by-step solution:
Now we have been given that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}}\]
Now, by applying the L'Hospital rule, as the given problem is in indeterminate form
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]'}}{{\left[ {x - \sin x} \right]'}}\]
By taking a derivative, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{\sin x}}\cos x}}{{1 - \cos x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - \left( {{e^{\sin x}}\left( { - \sin x} \right) + {e^{sinx}}\cos x\cos x} \right)}}{{0 - \left( { - \sin x} \right)}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}} \cdot \sin x - {{\cos }^2}x{e^{\sin x}}}}{{\sin x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}}\cos x + \sin x \cdot {e^{\sin x}} - {{\cos }^2}x{e^{\sin x}}{{cos x - 2\cos x\left( { - \sin x} \right){e^{\sin x}}}}}}{{\cos x}} \\
\]
By applying the limit, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \dfrac{{{e^0} + {e^0} \times 1 + 0 \cdot {e^0} \cdot 1 - {1^2} \cdot {e^0} \cdot 1 - 2 \cdot 1\left( { - 0} \right){e^0}}}{1} \\
= 1 + 1 - 1\left( {\because {e^0} = 1} \right) \\
= 1 \\
\]
Hence, option (C) is the correct option
Additional information:When computing sums on limits, a stalemate can occur when the numerator and denominator of the limit produce a \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\]. An indeterminate form is what it's termed. In this scenario, a way out is to continue computing the limit by differentiating both the numerator and the denominator until the numerator and denominator no longer provide the indeterminate form. The L-Hospital rule is the method of taking derivatives of the numerator and denominator of a limit and it can be used many times.
Note: Students must remember the condition of the L'Hospital rule, which states that a fraction must be of two functions and the function must be indeterminate, and they can only use this method directly if the limit problem is not indeterminate.
To compute the limit, all we have to do is take the derivative of the numerator as well as the denominator.
Formula used:
We have been using the following formula:
1. \[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\]
2. \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
3. \[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
Complete step-by-step solution:
Now we have been given that \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}}\]
Now, by applying the L'Hospital rule, as the given problem is in indeterminate form
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]}}{{\left[ {x - \sin x} \right]}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left[ {{e^x} - {e^{sinx}}} \right]'}}{{\left[ {x - \sin x} \right]'}}\]
By taking a derivative, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - {e^{\sin x}}\cos x}}{{1 - \cos x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} - \left( {{e^{\sin x}}\left( { - \sin x} \right) + {e^{sinx}}\cos x\cos x} \right)}}{{0 - \left( { - \sin x} \right)}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}} \cdot \sin x - {{\cos }^2}x{e^{\sin x}}}}{{\sin x}} \\
= \mathop {\lim }\limits_{x \to 0} \dfrac{{{e^x} + {e^{\sin x}}\cos x + \sin x \cdot {e^{\sin x}} - {{\cos }^2}x{e^{\sin x}}{{cos x - 2\cos x\left( { - \sin x} \right){e^{\sin x}}}}}}{{\cos x}} \\
\]
By applying the limit, we get
\[
\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - {e^{\sin x}}}}{{x - \sin x}}} \right) = \dfrac{{{e^0} + {e^0} \times 1 + 0 \cdot {e^0} \cdot 1 - {1^2} \cdot {e^0} \cdot 1 - 2 \cdot 1\left( { - 0} \right){e^0}}}{1} \\
= 1 + 1 - 1\left( {\because {e^0} = 1} \right) \\
= 1 \\
\]
Hence, option (C) is the correct option
Additional information:When computing sums on limits, a stalemate can occur when the numerator and denominator of the limit produce a \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\]. An indeterminate form is what it's termed. In this scenario, a way out is to continue computing the limit by differentiating both the numerator and the denominator until the numerator and denominator no longer provide the indeterminate form. The L-Hospital rule is the method of taking derivatives of the numerator and denominator of a limit and it can be used many times.
Note: Students must remember the condition of the L'Hospital rule, which states that a fraction must be of two functions and the function must be indeterminate, and they can only use this method directly if the limit problem is not indeterminate.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

