
Find the value of \[\dfrac{d}{{dx}}\left( {{e^x}\log\left( {1 + {x^2}} \right)} \right)\].
A. \[{e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right)\]
B. \[{e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right)\]
C. \[{e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{x}{{\left( {1 + {x^2}} \right)}}} \right)\]
D. \[{e^x}\left( {\log\left( {1 + {x^2}} \right) - \dfrac{x}{{\left( {1 + {x^2}} \right)}}} \right)\]
Answer
232.8k+ views
Hint: First, consider \[y = {e^x}log\left( {1 + {x^2}} \right)\]. Then differentiate the equation with respect to the variable \[x\] and apply the product rule of differentiation to reach the required answer.
Formula Used:
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given derivative is \[\dfrac{d}{{dx}}\left( {{e^x}\log\left( {1 + {x^2}} \right)} \right)\].
Let consider,
\[y = {e^x}\log\left( {1 + {x^2}} \right)\]
Now differentiate the equation with respect to the variable \[x\] and apply the product rule of differentiation.
We get,
\[\dfrac{{dy}}{{dx}} = \log\left( {1 + {x^2}} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) + {e^x}\dfrac{d}{{dx}}\left( {\log\left( {1 + {x^2}} \right)} \right)\]
Apply the differential formulas \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\], \[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] and the chain rule.
\[\dfrac{{dy}}{{dx}} = {e^x}\log\left( {1 + {x^2}} \right) + {e^x}\left( {\dfrac{1}{{\left( {1 + {x^2}} \right)}}\dfrac{d}{{dx}}\left( {1 + {x^2}} \right)} \right)\]
Now apply the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\log\left( {1 + {x^2}} \right) + {e^x}\left( {\dfrac{1}{{\left( {1 + {x^2}} \right)}}\left( {2x} \right)} \right)\]
Simplify the above equation.
Factor out the common term.
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right)\]
Therefore,
\[\dfrac{d}{{dx}}\left( {{e^x}\log\left( {1 + {x^2}} \right)} \right) = {e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right)\]
Hence the correct option is A.
Note: Students often make mistakes while using the product rule on the composite functions. To calculate the derivative of a composite function always apply the chain rule of differentiation.
Formula Used:
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Product rule of differentiation: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given derivative is \[\dfrac{d}{{dx}}\left( {{e^x}\log\left( {1 + {x^2}} \right)} \right)\].
Let consider,
\[y = {e^x}\log\left( {1 + {x^2}} \right)\]
Now differentiate the equation with respect to the variable \[x\] and apply the product rule of differentiation.
We get,
\[\dfrac{{dy}}{{dx}} = \log\left( {1 + {x^2}} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) + {e^x}\dfrac{d}{{dx}}\left( {\log\left( {1 + {x^2}} \right)} \right)\]
Apply the differential formulas \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\], \[\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}\] and the chain rule.
\[\dfrac{{dy}}{{dx}} = {e^x}\log\left( {1 + {x^2}} \right) + {e^x}\left( {\dfrac{1}{{\left( {1 + {x^2}} \right)}}\dfrac{d}{{dx}}\left( {1 + {x^2}} \right)} \right)\]
Now apply the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\log\left( {1 + {x^2}} \right) + {e^x}\left( {\dfrac{1}{{\left( {1 + {x^2}} \right)}}\left( {2x} \right)} \right)\]
Simplify the above equation.
Factor out the common term.
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right)\]
Therefore,
\[\dfrac{d}{{dx}}\left( {{e^x}\log\left( {1 + {x^2}} \right)} \right) = {e^x}\left( {\log\left( {1 + {x^2}} \right) + \dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right)\]
Hence the correct option is A.
Note: Students often make mistakes while using the product rule on the composite functions. To calculate the derivative of a composite function always apply the chain rule of differentiation.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

