
Find the value of \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\] .
A.\[\dfrac{1}{4}\]
B.\[\dfrac{1}{{2\sqrt 2 }}\]
C.\[\dfrac{1}{2}\]
D.\[\dfrac{1}{{\sqrt 2 }}\]
Answer
233.1k+ views
Hint: First write the formula of sin3x and cos3x then obtain the value of \[{\cos ^3}x,{\sin ^3}x\] and substitute in the given equation and calculate to obtain the required value.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

