
Find the value of \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
A. \[{}^{18}{C_3}\]
B. \[{}^{18}{C_4}\]
C. \[{}^{14}{C_7}\]
D. None of these
Answer
232.8k+ views
Hint: First, simplify the summation by substituting the values of \[j\]. Then, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\] and solve the equation. Again, use this property and solve the expression to get the required answer.
Formula Used:\[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
Complete step by step solution:The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Option ‘B’ is correct
Note: The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Formula Used:\[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
Complete step by step solution:The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Option ‘B’ is correct
Note: The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

