
Find the types of the lines \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\]
A. Parallel
B. Perpendicular
C. Concurrent
D. None of these
Answer
233.1k+ views
Hint First, form a square matrix by using the coefficients of the variables of the given equations of lines. Then calculate the determinant of the square matrix. Check the sign of the determinant to determine the type of the lines.
Formula used:
The lines \[{a_1}x + {b_1}y + {c_1} = 0\], \[{a_2}x + {b_2}y + {c_2} = 0\] and \[{a_3}x + {b_3}y + {c_3} = 0\] are concurrent, if
\[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\]
Complete step by step solution:
The given equations of lines are \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\].
Let’s formed a matrix using the coefficients of the variables of the given equation.
\[A = \left[ {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right]\]
We know that if the lines are parallel, then the lines have the same coefficients of \[x\] and \[y\] but the constant term is different.
In the above matrix, the coefficients of \[x\] and \[y\] are not equal.
So, the given lines are not parallel.
Hence, the option A is incorrect.
Also, if the lines are perpendicular, then the coefficient of \[y\] term in the first line is equal to the coefficient of \[x\] term in the second line and vice versa with one negative sign.
In the above matrix, the coefficients of \[y\] term in the first line is not equal to the coefficient of \[x\] term in the second line.
So, the given lines are not perpendicular.
Hence, the option B is incorrect.
Now calculate the determinant of the above matrix.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {\left( {10} \right)\left( { - 11} \right) - \left( {66} \right)\left( { - 3} \right)} \right] - \left( { - 18} \right)\left[ {\left( {12} \right)\left( { - 11} \right) - \left( 6 \right)\left( { - 3} \right)} \right] + 1\left[ {\left( {12} \right)\left( {66} \right) - \left( 6 \right)\left( {10} \right)} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ { - 110 + 198} \right] + 18\left[ { - 132 + 18} \right] + 1\left[ {792 - 60} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {88} \right] + 18\left[ { - 114} \right] + 1\left[ {732} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 1320 - 2052 + 732\]
\[ \Rightarrow \]\[\left| A \right| = - 732 + 732\]
\[ \Rightarrow \]\[\left| A \right| = 0\]
Therefore, the given lines are concurrent.
Hence the correct option is C.
Note: Students often confused with the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\] and \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
To check whether three lines \[{a_1}x + {b_1}y + {c_1} = 0,{a_2}x + {b_2}y + {c_2} = 0,{a_3}x + {b_3}y + {c_3} = 0\] are concurrent we use the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\].
To check whether the points\[\left( {{a_1},{b_1}} \right)\], \[\left( {{a_2},{b_2}} \right)\] and \[\left( {{a_3},{b_3}} \right)\] are collinear, we use \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
Formula used:
The lines \[{a_1}x + {b_1}y + {c_1} = 0\], \[{a_2}x + {b_2}y + {c_2} = 0\] and \[{a_3}x + {b_3}y + {c_3} = 0\] are concurrent, if
\[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\]
Complete step by step solution:
The given equations of lines are \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\].
Let’s formed a matrix using the coefficients of the variables of the given equation.
\[A = \left[ {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right]\]
We know that if the lines are parallel, then the lines have the same coefficients of \[x\] and \[y\] but the constant term is different.
In the above matrix, the coefficients of \[x\] and \[y\] are not equal.
So, the given lines are not parallel.
Hence, the option A is incorrect.
Also, if the lines are perpendicular, then the coefficient of \[y\] term in the first line is equal to the coefficient of \[x\] term in the second line and vice versa with one negative sign.
In the above matrix, the coefficients of \[y\] term in the first line is not equal to the coefficient of \[x\] term in the second line.
So, the given lines are not perpendicular.
Hence, the option B is incorrect.
Now calculate the determinant of the above matrix.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {\left( {10} \right)\left( { - 11} \right) - \left( {66} \right)\left( { - 3} \right)} \right] - \left( { - 18} \right)\left[ {\left( {12} \right)\left( { - 11} \right) - \left( 6 \right)\left( { - 3} \right)} \right] + 1\left[ {\left( {12} \right)\left( {66} \right) - \left( 6 \right)\left( {10} \right)} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ { - 110 + 198} \right] + 18\left[ { - 132 + 18} \right] + 1\left[ {792 - 60} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {88} \right] + 18\left[ { - 114} \right] + 1\left[ {732} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 1320 - 2052 + 732\]
\[ \Rightarrow \]\[\left| A \right| = - 732 + 732\]
\[ \Rightarrow \]\[\left| A \right| = 0\]
Therefore, the given lines are concurrent.
Hence the correct option is C.
Note: Students often confused with the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\] and \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
To check whether three lines \[{a_1}x + {b_1}y + {c_1} = 0,{a_2}x + {b_2}y + {c_2} = 0,{a_3}x + {b_3}y + {c_3} = 0\] are concurrent we use the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\].
To check whether the points\[\left( {{a_1},{b_1}} \right)\], \[\left( {{a_2},{b_2}} \right)\] and \[\left( {{a_3},{b_3}} \right)\] are collinear, we use \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

