# Find the term independent of $x$in the expansion of

${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$

Answer

Verified

366.3k+ views

Hint: Use binomial expansion and equate the power of x to zero.

As we know according to Binomial expansion, the expansion of

${\left( {b - a} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{b^{n - r}}{{\left( { - a} \right)}^r}} $

So, on comparing $b = {x^3},{\text{ }}a = \dfrac{3}{{{x^2}}},{\text{ }}n = 15$

$

\Rightarrow {\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( {{x^3}} \right)}^{15 - r}}{{\left( { - \dfrac{3}{{{x^2}}}} \right)}^r}} \\

= \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 3r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}{{\left( x \right)}^{ - 2r}}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} \\

$

Now, we want the term independent of $x$

So, put the power of $x$in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$ equal to zero.

$

\Rightarrow 45 - 5r = 0 \\

\Rightarrow 5r = 45 \\

\Rightarrow r = 9 \\

$

So, put $r = 9,$in $\sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} $ we have

$

\Rightarrow \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} = {}^{15}{C_9}{\left( x \right)^0}{\left( { - 1} \right)^9}{\left( 3 \right)^9} \\

\Rightarrow - {}^{15}{C_9}{\left( 3 \right)^9} \\

$

So, this is the required term independent of $x$ in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$.

Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the general expansion of ${\left( {b - a} \right)^n}$, then in the expansion put the power of $x$ equal to zero, and calculate the value of $r$, then put this value of $r$ in the expansion we will get the required term which is independent of $x$.

As we know according to Binomial expansion, the expansion of

${\left( {b - a} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{b^{n - r}}{{\left( { - a} \right)}^r}} $

So, on comparing $b = {x^3},{\text{ }}a = \dfrac{3}{{{x^2}}},{\text{ }}n = 15$

$

\Rightarrow {\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( {{x^3}} \right)}^{15 - r}}{{\left( { - \dfrac{3}{{{x^2}}}} \right)}^r}} \\

= \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 3r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}{{\left( x \right)}^{ - 2r}}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} \\

$

Now, we want the term independent of $x$

So, put the power of $x$in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$ equal to zero.

$

\Rightarrow 45 - 5r = 0 \\

\Rightarrow 5r = 45 \\

\Rightarrow r = 9 \\

$

So, put $r = 9,$in $\sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} $ we have

$

\Rightarrow \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} = {}^{15}{C_9}{\left( x \right)^0}{\left( { - 1} \right)^9}{\left( 3 \right)^9} \\

\Rightarrow - {}^{15}{C_9}{\left( 3 \right)^9} \\

$

So, this is the required term independent of $x$ in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$.

Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the general expansion of ${\left( {b - a} \right)^n}$, then in the expansion put the power of $x$ equal to zero, and calculate the value of $r$, then put this value of $r$ in the expansion we will get the required term which is independent of $x$.

Last updated date: 28th Sep 2023

•

Total views: 366.3k

•

Views today: 11.66k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

How many crores make 10 million class 7 maths CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE