
Find the limit of given sum of a series $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=$
(a) $\dfrac{1}{100}$
(b) $3$
(c) $\dfrac{1}{3}$
(d) $1$
Answer
618.9k+ views
Hint: Here we find the sum of first natural numbers to power , then use some algebraic operation and also take the help of limit properties to solve the given problem.
Complete step-by-step solution -
The sum of first n natural numbers to power one can be written as,
\[{{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\dfrac{n\left( n+1 \right)}{2}=\dfrac{{{n}^{2}}}{2}+\dfrac{n}{2}\]
Similarly, the sum of first n natural numbers to power two can be written as,
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{{{n}^{3}}}{3}+\dfrac{{{n}^{2}}}{2}+\dfrac{n}{6}\]
The sum of first n natural numbers to power three can be written as,
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}}{4}+\dfrac{{{n}^{3}}}{2}+\dfrac{{{n}^{2}}}{4}\]
Generalizing this, we get
\[{{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\dfrac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots\]
Now substituting (\[x=99\]), we get
\[{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots\]
Now the given expression becomes,
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{n}^{100}}}{100{{n}^{100}}}+\dfrac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\dfrac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{100}+\dfrac{{{k}_{1}}}{n}+\dfrac{{{k}_{2}}}{{{n}^{2}}}+\ldots\]
Applying the limits, we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+\dfrac{{{k}_{1}}}{\infty }+\dfrac{{{k}_{2}}}{\infty }+\ldots\]
We know, $\dfrac{1}{\infty }$ tends to zero, so
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+0+0+\ldots\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}\]
Hence, the correct option for the given question is option (a).
Complete step-by-step solution -
The sum of first n natural numbers to power one can be written as,
\[{{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\dfrac{n\left( n+1 \right)}{2}=\dfrac{{{n}^{2}}}{2}+\dfrac{n}{2}\]
Similarly, the sum of first n natural numbers to power two can be written as,
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}\]
\[{{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\dfrac{{{n}^{3}}}{3}+\dfrac{{{n}^{2}}}{2}+\dfrac{n}{6}\]
The sum of first n natural numbers to power three can be written as,
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}\]
\[{{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\dfrac{{{n}^{4}}}{4}+\dfrac{{{n}^{3}}}{2}+\dfrac{{{n}^{2}}}{4}\]
Generalizing this, we get
\[{{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\dfrac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots\]
Now substituting (\[x=99\]), we get
\[{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots\]
Now the given expression becomes,
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{n}^{100}}}{100{{n}^{100}}}+\dfrac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\dfrac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{100}+\dfrac{{{k}_{1}}}{n}+\dfrac{{{k}_{2}}}{{{n}^{2}}}+\ldots\]
Applying the limits, we get
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+\dfrac{{{k}_{1}}}{\infty }+\dfrac{{{k}_{2}}}{\infty }+\ldots\]
We know, $\dfrac{1}{\infty }$ tends to zero, so
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}+0+0+\ldots\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\dfrac{1}{100}\]
Hence, the correct option for the given question is option (a).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

