
Find the length and foot of the perpendicular from the point $P\left( 7,14,5 \right)$ to the plane $2x+4y-z=2$.
Answer
592.2k+ views
Hint: Let us assume that the foot of the perpendicular on the plane is $Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$. Now, write the vector $\overrightarrow{PQ}$. Then write the vector normal to the given plane $2x+4y-z=2$. The vector normal to this plane is \[2\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,\]and let name this vector as n. Now, the vector PQ is parallel to this vector n so apply the condition of two parallel vectors and then you get the value of ${{x}_{1}},{{y}_{1}},{{z}_{1}}$ in terms of some constant. Then to eliminate that constant satisfy the point Q in the equation of a plane $2x+4y-z=2$. Hence, you will get the point Q which is perpendicular. Now, to find the length of the perpendicular from point P to the plane find the distance between the point P and Q using distance formula.
Complete step by step answer:
We have given a plane with the following equation:
$2x+4y-z=2$
And we are asked to find the length and foot of the perpendicular from the point $P\left( 7,14,5 \right)$ to the plane.
Let us assume that the foot of the perpendicular from point $P\left( 7,14,5 \right)$ is $Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$. In the below diagram, we have shown a plane $2x+4y-z=2$ and points P and Q.
Now, the normal vector corresponding to the given plane $2x+4y-z=2$ is given as:
\[2\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,\]
And we are denoting the vector by n so rewriting the above expression as:
$\overrightarrow{n}=2\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,$
Now, find the vector PQ by subtracting x, y and z coordinate of point P from x, y and z coordinate of Q and multiplying the x coordinate, y coordinate and z coordinate difference by \[\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j}}\,,\overset{\wedge }{\mathop{k}}\,\] respectively.
$\overrightarrow{PQ}=\left( {{x}_{1}}-7 \right)\overset{\wedge }{\mathop{i}}\,+\left( {{y}_{1}}-14 \right)\overset{\wedge }{\mathop{j}}\,+\left( {{z}_{1}}-5 \right)\overset{\wedge }{\mathop{k}}\,$
Now, normal vector n and the above vector PQ is parallel so their x, y and z coordinates are proportional.
$\dfrac{\left( {{x}_{1}}-7 \right)}{2}=\dfrac{\left( {{y}_{1}}-14 \right)}{4}=\dfrac{\left( {{z}_{1}}-5 \right)}{-1}=\lambda $
Now, equating each fraction to $\lambda $ we get,
$\begin{align}
& \dfrac{\left( {{x}_{1}}-7 \right)}{2}=\lambda ; \\
& \dfrac{\left( {{y}_{1}}-14 \right)}{4}=\lambda ; \\
& \dfrac{\left( {{z}_{1}}-5 \right)}{-1}=\lambda \\
\end{align}$
Solving each of the above equation we get,
$\begin{align}
& {{x}_{1}}-7=2\lambda \\
& \Rightarrow {{x}_{1}}=2\lambda +7 \\
& {{y}_{1}}-14=4\lambda \\
& \Rightarrow {{y}_{1}}=4\lambda +14 \\
& {{z}_{1}}-5=-\lambda \\
& \Rightarrow {{z}_{1}}=-\lambda +5 \\
\end{align}$
From the above calculation, we have got the values of ${{x}_{1}},{{y}_{1}}\And {{z}_{1}}$ as follows:
$\begin{align}
& {{x}_{1}}=2\lambda +7; \\
& {{y}_{1}}=4\lambda +14; \\
& {{z}_{1}}=-\lambda +5 \\
\end{align}$
Now, the point Q lies on the plane so it will satisfy the equation of a plane. Substituting the coordinates of point Q in the equation of a plane we get,
$\begin{align}
& 2x+4y-z=2 \\
& \Rightarrow 2\left( 2\lambda +7 \right)+4\left( 4\lambda +14 \right)-\left( -\lambda +5 \right)=2 \\
& \Rightarrow 4\lambda +14+16\lambda +56+\lambda -5=2 \\
& \Rightarrow 21\lambda +65=2 \\
\end{align}$
Subtracting 65 on both the sides of the above equation we get,
$\begin{align}
& 21\lambda =2-65 \\
& \Rightarrow 21\lambda =-63 \\
& \Rightarrow \lambda =-\dfrac{63}{21}=-3 \\
\end{align}$
Now, substituting the value of $\lambda $ in the coordinates of Q we get,
$\begin{align}
& {{x}_{1}}=2\lambda +7 \\
& \Rightarrow {{x}_{1}}=2\left( -3 \right)+7=-6+7=1 \\
& {{y}_{1}}=4\lambda +14 \\
& \Rightarrow {{y}_{1}}=4\left( -3 \right)+14=-12+14=2 \\
& {{z}_{1}}=-\lambda +5 \\
& \Rightarrow {{z}_{1}}=3+5=8 \\
\end{align}$
Hence, the coordinates of Q are:
$\begin{align}
& {{x}_{1}}=1; \\
& {{y}_{1}}=2; \\
& {{z}_{1}}=8 \\
\end{align}$
Hence, the foot of the perpendicular (Q) is equal to $\left( 1,2,8 \right)$.
Now, to find the length of the perpendicular, we are going to find the distance between P and Q by distance formula.
Let us suppose that we have two points $Y\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\And Z\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ then using distance formula, the distance between these points is equal to:
$YZ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$
Now, using this distance formula in finding the distance between $P\left( 7,14,5 \right)\And Q\left( 1,2,8 \right)$ we get,
$\begin{align}
& PQ=\sqrt{{{\left( 1-7 \right)}^{2}}+{{\left( 2-14 \right)}^{2}}+{{\left( 8-5 \right)}^{2}}} \\
& \Rightarrow PQ=\sqrt{{{\left( -6 \right)}^{2}}+{{\left( -12 \right)}^{2}}+{{\left( 3 \right)}^{2}}} \\
& \Rightarrow PQ=\sqrt{36+144+9} \\
& \Rightarrow PQ=\sqrt{189} \\
\end{align}$
Hence, the length of the perpendicular from point P to the plane is equal to $\sqrt{189}$.
Note: You can check the foot of perpendicular by substituting the point Q in the equation of a plane because the foot of perpendicular lies in the plane.
Point Q that we have found above is equal to $\left( 1,2,8 \right)$. Now, substituting this point in equation of a plane $2x+4y-z=2$ we get,
$\begin{align}
& 2\left( 1 \right)+4\left( 2 \right)-8=2 \\
& \Rightarrow 2+8-8=2 \\
& \Rightarrow 2+0=2 \\
& \Rightarrow 2=2 \\
\end{align}$
As you can see that L.H.S = R.H.S of the above equation so the point Q is satisfying the equation of a plane.
Hence, the point Q that we have found out is correct.
Complete step by step answer:
We have given a plane with the following equation:
$2x+4y-z=2$
And we are asked to find the length and foot of the perpendicular from the point $P\left( 7,14,5 \right)$ to the plane.
Let us assume that the foot of the perpendicular from point $P\left( 7,14,5 \right)$ is $Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$. In the below diagram, we have shown a plane $2x+4y-z=2$ and points P and Q.
Now, the normal vector corresponding to the given plane $2x+4y-z=2$ is given as:
\[2\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,\]
And we are denoting the vector by n so rewriting the above expression as:
$\overrightarrow{n}=2\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,$
Now, find the vector PQ by subtracting x, y and z coordinate of point P from x, y and z coordinate of Q and multiplying the x coordinate, y coordinate and z coordinate difference by \[\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j}}\,,\overset{\wedge }{\mathop{k}}\,\] respectively.
$\overrightarrow{PQ}=\left( {{x}_{1}}-7 \right)\overset{\wedge }{\mathop{i}}\,+\left( {{y}_{1}}-14 \right)\overset{\wedge }{\mathop{j}}\,+\left( {{z}_{1}}-5 \right)\overset{\wedge }{\mathop{k}}\,$
Now, normal vector n and the above vector PQ is parallel so their x, y and z coordinates are proportional.
$\dfrac{\left( {{x}_{1}}-7 \right)}{2}=\dfrac{\left( {{y}_{1}}-14 \right)}{4}=\dfrac{\left( {{z}_{1}}-5 \right)}{-1}=\lambda $
Now, equating each fraction to $\lambda $ we get,
$\begin{align}
& \dfrac{\left( {{x}_{1}}-7 \right)}{2}=\lambda ; \\
& \dfrac{\left( {{y}_{1}}-14 \right)}{4}=\lambda ; \\
& \dfrac{\left( {{z}_{1}}-5 \right)}{-1}=\lambda \\
\end{align}$
Solving each of the above equation we get,
$\begin{align}
& {{x}_{1}}-7=2\lambda \\
& \Rightarrow {{x}_{1}}=2\lambda +7 \\
& {{y}_{1}}-14=4\lambda \\
& \Rightarrow {{y}_{1}}=4\lambda +14 \\
& {{z}_{1}}-5=-\lambda \\
& \Rightarrow {{z}_{1}}=-\lambda +5 \\
\end{align}$
From the above calculation, we have got the values of ${{x}_{1}},{{y}_{1}}\And {{z}_{1}}$ as follows:
$\begin{align}
& {{x}_{1}}=2\lambda +7; \\
& {{y}_{1}}=4\lambda +14; \\
& {{z}_{1}}=-\lambda +5 \\
\end{align}$
Now, the point Q lies on the plane so it will satisfy the equation of a plane. Substituting the coordinates of point Q in the equation of a plane we get,
$\begin{align}
& 2x+4y-z=2 \\
& \Rightarrow 2\left( 2\lambda +7 \right)+4\left( 4\lambda +14 \right)-\left( -\lambda +5 \right)=2 \\
& \Rightarrow 4\lambda +14+16\lambda +56+\lambda -5=2 \\
& \Rightarrow 21\lambda +65=2 \\
\end{align}$
Subtracting 65 on both the sides of the above equation we get,
$\begin{align}
& 21\lambda =2-65 \\
& \Rightarrow 21\lambda =-63 \\
& \Rightarrow \lambda =-\dfrac{63}{21}=-3 \\
\end{align}$
Now, substituting the value of $\lambda $ in the coordinates of Q we get,
$\begin{align}
& {{x}_{1}}=2\lambda +7 \\
& \Rightarrow {{x}_{1}}=2\left( -3 \right)+7=-6+7=1 \\
& {{y}_{1}}=4\lambda +14 \\
& \Rightarrow {{y}_{1}}=4\left( -3 \right)+14=-12+14=2 \\
& {{z}_{1}}=-\lambda +5 \\
& \Rightarrow {{z}_{1}}=3+5=8 \\
\end{align}$
Hence, the coordinates of Q are:
$\begin{align}
& {{x}_{1}}=1; \\
& {{y}_{1}}=2; \\
& {{z}_{1}}=8 \\
\end{align}$
Hence, the foot of the perpendicular (Q) is equal to $\left( 1,2,8 \right)$.
Now, to find the length of the perpendicular, we are going to find the distance between P and Q by distance formula.
Let us suppose that we have two points $Y\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\And Z\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ then using distance formula, the distance between these points is equal to:
$YZ=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{z}_{2}}-{{z}_{1}} \right)}^{2}}}$
Now, using this distance formula in finding the distance between $P\left( 7,14,5 \right)\And Q\left( 1,2,8 \right)$ we get,
$\begin{align}
& PQ=\sqrt{{{\left( 1-7 \right)}^{2}}+{{\left( 2-14 \right)}^{2}}+{{\left( 8-5 \right)}^{2}}} \\
& \Rightarrow PQ=\sqrt{{{\left( -6 \right)}^{2}}+{{\left( -12 \right)}^{2}}+{{\left( 3 \right)}^{2}}} \\
& \Rightarrow PQ=\sqrt{36+144+9} \\
& \Rightarrow PQ=\sqrt{189} \\
\end{align}$
Hence, the length of the perpendicular from point P to the plane is equal to $\sqrt{189}$.
Note: You can check the foot of perpendicular by substituting the point Q in the equation of a plane because the foot of perpendicular lies in the plane.
Point Q that we have found above is equal to $\left( 1,2,8 \right)$. Now, substituting this point in equation of a plane $2x+4y-z=2$ we get,
$\begin{align}
& 2\left( 1 \right)+4\left( 2 \right)-8=2 \\
& \Rightarrow 2+8-8=2 \\
& \Rightarrow 2+0=2 \\
& \Rightarrow 2=2 \\
\end{align}$
As you can see that L.H.S = R.H.S of the above equation so the point Q is satisfying the equation of a plane.
Hence, the point Q that we have found out is correct.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

