
Find the equation of plane containing the line \[2x - y + z - 3 = 0\]; \[3x + y + z = 5\] and at a distance of \[\dfrac{1}{{\sqrt 6 }}\] from the point \[\left( {2,1, - 1} \right)\].
A. \[2x - y + z - 3 = 0\]
B. \[62x + 29y + 19z - 105 = 0\]
C. \[3x + y + z = 5\]
D. None of these
Answer
597k+ views
Hint: In this problem, first we need to find the equation of the plane containing the given two lines. Next, find the distance of the plain from the given points and hence find the equations of the planes.
Complete step-by-step answer:
The equation of the plane containing the lines \[2x - y + z - 3 = 0\] and \[3x + y + z = 5\] is as follows:
\[
\,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\
\Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\
\Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\
\]
Since, the distance of the plane \[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\] from the points \[\left( {2,1, - 1} \right)\] is\[\dfrac{1}{{\sqrt 6 }}\], it can be written as follows:
\[
\,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\
\]
Further, simplify the above equation.
\[
\,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\
\Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\
\Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\
\]
Now, substitute 0 for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\
\Rightarrow 2x - y + z - 3 = 0 \\
\]
Further, substitute \[ - \dfrac{{24}}{5} \] for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\
\Rightarrow - 62x - 29y - 19z + 105 = 0 \\
\Rightarrow 62x + 29y + 19z - 105 = 0 \\
\]
Since, the equation of the planes are \[2x - y + z - 3 = 0\]
and\[62x + 29y + 19z - 105 = 0\]
, therefore, option A and B are correct.
Note:The equation of the plane containing two lines \[{L_1}\] and \[{L_2}\] is\[{L_1} + \lambda {L_2} = 0\]. There are two planes containing the same lines and at the same distance from the given point.
Complete step-by-step answer:
The equation of the plane containing the lines \[2x - y + z - 3 = 0\] and \[3x + y + z = 5\] is as follows:
\[
\,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\
\Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\
\Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\
\]
Since, the distance of the plane \[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\] from the points \[\left( {2,1, - 1} \right)\] is\[\dfrac{1}{{\sqrt 6 }}\], it can be written as follows:
\[
\,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\
\]
Further, simplify the above equation.
\[
\,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\
\Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\
\Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\
\]
Now, substitute 0 for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\
\Rightarrow 2x - y + z - 3 = 0 \\
\]
Further, substitute \[ - \dfrac{{24}}{5} \] for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\
\Rightarrow - 62x - 29y - 19z + 105 = 0 \\
\Rightarrow 62x + 29y + 19z - 105 = 0 \\
\]
Since, the equation of the planes are \[2x - y + z - 3 = 0\]
and\[62x + 29y + 19z - 105 = 0\]
, therefore, option A and B are correct.
Note:The equation of the plane containing two lines \[{L_1}\] and \[{L_2}\] is\[{L_1} + \lambda {L_2} = 0\]. There are two planes containing the same lines and at the same distance from the given point.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

