
Find the equation of plane containing the line \[2x - y + z - 3 = 0\]; \[3x + y + z = 5\] and at a distance of \[\dfrac{1}{{\sqrt 6 }}\] from the point \[\left( {2,1, - 1} \right)\].
A. \[2x - y + z - 3 = 0\]
B. \[62x + 29y + 19z - 105 = 0\]
C. \[3x + y + z = 5\]
D. None of these
Answer
584.1k+ views
Hint: In this problem, first we need to find the equation of the plane containing the given two lines. Next, find the distance of the plain from the given points and hence find the equations of the planes.
Complete step-by-step answer:
The equation of the plane containing the lines \[2x - y + z - 3 = 0\] and \[3x + y + z = 5\] is as follows:
\[
\,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\
\Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\
\Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\
\]
Since, the distance of the plane \[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\] from the points \[\left( {2,1, - 1} \right)\] is\[\dfrac{1}{{\sqrt 6 }}\], it can be written as follows:
\[
\,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\
\]
Further, simplify the above equation.
\[
\,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\
\Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\
\Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\
\]
Now, substitute 0 for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\
\Rightarrow 2x - y + z - 3 = 0 \\
\]
Further, substitute \[ - \dfrac{{24}}{5} \] for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\
\Rightarrow - 62x - 29y - 19z + 105 = 0 \\
\Rightarrow 62x + 29y + 19z - 105 = 0 \\
\]
Since, the equation of the planes are \[2x - y + z - 3 = 0\]
and\[62x + 29y + 19z - 105 = 0\]
, therefore, option A and B are correct.
Note:The equation of the plane containing two lines \[{L_1}\] and \[{L_2}\] is\[{L_1} + \lambda {L_2} = 0\]. There are two planes containing the same lines and at the same distance from the given point.
Complete step-by-step answer:
The equation of the plane containing the lines \[2x - y + z - 3 = 0\] and \[3x + y + z = 5\] is as follows:
\[
\,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\
\Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\
\Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\
\]
Since, the distance of the plane \[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\] from the points \[\left( {2,1, - 1} \right)\] is\[\dfrac{1}{{\sqrt 6 }}\], it can be written as follows:
\[
\,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
\Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\
\]
Further, simplify the above equation.
\[
\,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\
\Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\
\Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\
\Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\
\]
Now, substitute 0 for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\
\Rightarrow 2x - y + z - 3 = 0 \\
\]
Further, substitute \[ - \dfrac{{24}}{5} \] for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
\,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\
\Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\
\Rightarrow - 62x - 29y - 19z + 105 = 0 \\
\Rightarrow 62x + 29y + 19z - 105 = 0 \\
\]
Since, the equation of the planes are \[2x - y + z - 3 = 0\]
and\[62x + 29y + 19z - 105 = 0\]
, therefore, option A and B are correct.
Note:The equation of the plane containing two lines \[{L_1}\] and \[{L_2}\] is\[{L_1} + \lambda {L_2} = 0\]. There are two planes containing the same lines and at the same distance from the given point.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

