Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Find the equation of plane containing the line \[2x - y + z - 3 = 0\]; \[3x + y + z = 5\] and at a distance of \[\dfrac{1}{{\sqrt 6 }}\] from the point \[\left( {2,1, - 1} \right)\].
A. \[2x - y + z - 3 = 0\]
B. \[62x + 29y + 19z - 105 = 0\]
C. \[3x + y + z = 5\]
D. None of these

seo-qna
Last updated date: 26th Apr 2024
Total views: 401.7k
Views today: 11.01k
Answer
VerifiedVerified
401.7k+ views
Hint: In this problem, first we need to find the equation of the plane containing the given two lines. Next, find the distance of the plain from the given points and hence find the equations of the planes.

Complete step-by-step answer:
The equation of the plane containing the lines \[2x - y + z - 3 = 0\] and \[3x + y + z = 5\] is as follows:
\[
  \,\,\,\,\,\,2x - y + z - 3 + \lambda \left( {3x + y + z - 5} \right) = 0 \\
   \Rightarrow 2x - y + z - 3 + 3x\lambda + y\lambda + z\lambda - 5\lambda = 0 \\
   \Rightarrow \left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0 \\
\]
Since, the distance of the plane \[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\] from the points \[\left( {2,1, - 1} \right)\] is\[\dfrac{1}{{\sqrt 6 }}\], it can be written as follows:
\[
  \,\,\,\,\,\left| {\dfrac{{2\left( {2 + 3\lambda } \right) + 1\left( {\lambda - 1} \right) - 1\left( {\lambda + 1} \right) - 3 - 5\lambda }}{{\sqrt {{{\left( {2 + 3\lambda } \right)}^2} + {{\left( {\lambda - 1} \right)}^2} + {{\left( {\lambda + 1} \right)}^2}} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
   \Rightarrow \left| {\dfrac{{4 + 6\lambda + \lambda - 1 - \lambda - 1 - 3 - 5\lambda }}{{\sqrt {4 + 9{\lambda ^2} + 12\lambda + 1 + {\lambda ^2} - 2\lambda + 1 + {\lambda ^2} + 2\lambda } }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
   \Rightarrow \left| {\dfrac{{\lambda - 1}}{{\sqrt {11{\lambda ^2} + 12\lambda + 6} }}} \right| = \dfrac{1}{{\sqrt 6 }} \\
   \Rightarrow 6{\left( {\lambda - 1} \right)^2} = 11{\lambda ^2} + 12\lambda + 6 \\
   \Rightarrow 6\left( {1 + {\lambda ^2} - 2\lambda } \right) = 11{\lambda ^2} + 12\lambda + 6 \\
\]
Further, simplify the above equation.
\[
  \,\,\,\,\,6 + 6{\lambda ^2} - 12\lambda = 11{\lambda ^2} + 12\lambda + 6 \\
   \Rightarrow 5{\lambda ^2} + 24\lambda = 0 \\
   \Rightarrow \lambda \left( {5\lambda + 24} \right) = 0 \\
   \Rightarrow \lambda = 0\,\,{\text{or}}\,\,\dfrac{{ - 24}}{5} \\
\]

Now, substitute 0 for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
  \,\,\,\,\,\left( {2 + 3\left( 0 \right)} \right)x + \left( {\left( 0 \right) - 1} \right)y + \left( {\left( 0 \right) + 1} \right)z - 3 - 5\left( 0 \right) = 0 \\
   \Rightarrow 2x - y + z - 3 = 0 \\
\]
Further, substitute \[ - \dfrac{{24}}{5} \] for \[\lambda \] in equation of plane\[\left( {2 + 3\lambda } \right)x + \left( {\lambda - 1} \right)y + \left( {\lambda + 1} \right)z - 3 - 5\lambda = 0\].
\[
  \,\,\,\,\,\left( {2 + 3\left( { - \dfrac{{24}}{5}} \right)} \right)x + \left( {\left( { - \dfrac{{24}}{5}} \right) - 1} \right)y + \left( {\left( { - \dfrac{{24}}{5}} \right) + 1} \right)z - 3 - 5\left( { - \dfrac{{24}}{5}} \right) = 0 \\
   \Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z - 3 + 24 = 0 \\
   \Rightarrow - \dfrac{{62}}{5}x - \dfrac{{29}}{5}y - \dfrac{{19}}{5}z + 21 = 0 \\
   \Rightarrow - 62x - 29y - 19z + 105 = 0 \\
   \Rightarrow 62x + 29y + 19z - 105 = 0 \\
\]
Since, the equation of the planes are \[2x - y + z - 3 = 0\]
 and\[62x + 29y + 19z - 105 = 0\]
, therefore, option A and B are correct.

Note:The equation of the plane containing two lines \[{L_1}\] and \[{L_2}\] is\[{L_1} + \lambda {L_2} = 0\]. There are two planes containing the same lines and at the same distance from the given point.