# Find the derivative of the following function. \[y=2\left| -{{\log }_{0.4}}x \right|+7\]

Last updated date: 24th Mar 2023

•

Total views: 309k

•

Views today: 2.87k

Answer

Verified

309k+ views

Hint: To find the derivative of the function given in the question, one must start by

simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.

To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.

We will first simplify the given function.

We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].

Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].

We will remove the modulus depending if\[x\]is greater or less than 0.

We know\[\log 0.4<0\].

Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]

Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].

Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]

Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].

Note: The first derivative of any function signifies the slope of the function. Also, we get

different values of derivatives of the function based on different values of\[x\]. Thus, one

should remove modulus carefully considering all the cases.

simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.

To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.

We will first simplify the given function.

We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].

Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].

We will remove the modulus depending if\[x\]is greater or less than 0.

We know\[\log 0.4<0\].

Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]

Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].

Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]

Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].

Note: The first derivative of any function signifies the slope of the function. Also, we get

different values of derivatives of the function based on different values of\[x\]. Thus, one

should remove modulus carefully considering all the cases.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE