# Find the derivative of the following function. \[y=2\left| -{{\log }_{0.4}}x \right|+7\]

Answer

Verified

383.1k+ views

Hint: To find the derivative of the function given in the question, one must start by

simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.

To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.

We will first simplify the given function.

We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].

Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].

We will remove the modulus depending if\[x\]is greater or less than 0.

We know\[\log 0.4<0\].

Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]

Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].

Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]

Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].

Note: The first derivative of any function signifies the slope of the function. Also, we get

different values of derivatives of the function based on different values of\[x\]. Thus, one

should remove modulus carefully considering all the cases.

simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.

To find the derivative of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\], we will differentiate it with respect to the variable\[x\]using some logarithmic properties.

We will first simplify the given function.

We know that\[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].

Substituting\[a=x,b=0.4\], we have\[y=2\left| -{{\log }_{0.4}}x \right|+7=2\left| \dfrac{-\log x}{\log 0.4} \right|+7\].

We will remove the modulus depending if\[x\]is greater or less than 0.

We know\[\log 0.4<0\].

Case 1: If\[x>1\], we have\[\log x>0\] .Thus, we have\[y=f(x)=\dfrac{-2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(1)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=-\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=-\dfrac{2}{x\log 0.4}\]. \[...(2)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(3)\]

Substituting equation\[(2)\]and\[(3)\]in equation\[(1)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=-\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=-\dfrac{2}{x\log 0.4}\].

Case 2: If\[x<1\], we have\[\log x<0\] .Thus, we have\[y=f(x)=\dfrac{2\log x}{\log 0.4}-7\].

We will use sum rule of differentiation of two functions such that if\[y=f(x)=g(x)+h(x)\]then\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}\]. \[...(4)\]

We know that differentiation of any function of the form\[y=a\log x+b\]is\[\dfrac{dy}{dx}=\dfrac{a}{x}\].

Substituting\[a=\dfrac{2}{\log 0.4},b=0\], we have\[\dfrac{dy}{dx}=\dfrac{dg(x)}{dx}=\dfrac{2}{x\log 0.4}\]. \[...(5)\]

We know that the differentiation of a constant function with respect to any variable is 0.

Thus, we have\[\dfrac{dy}{dx}=\dfrac{dh(x)}{dx}=0\]. \[...(6)\]

Substituting equation\[(5)\]and\[(6)\]in equation\[(4)\], we get\[\dfrac{dy}{dx}=\dfrac{df(x)}{dx}\dfrac{dg(x)}{dx}+\dfrac{dh(x)}{dx}=\dfrac{2}{x\log 0.4}\].

Thus, differentiation of the function\[y=2\left| -{{\log }_{0.4}}x \right|+7\]is\[\dfrac{dy}{dx}=\dfrac{2}{x\log 0.4}\].

Note: The first derivative of any function signifies the slope of the function. Also, we get

different values of derivatives of the function based on different values of\[x\]. Thus, one

should remove modulus carefully considering all the cases.

Recently Updated Pages

Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts

The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is the weight in lbs of a 75 Kg person class 11 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE