
Find the coordinates of the point, where the line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\] intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.
Answer
591.6k+ views
Hint: We start solving this problem by equating the given equation of the line to some constant $\lambda $. Then we find $x,y$ and $z$ in terms of $\lambda $. Then we substitute these terms in the equation of plane as they intersect, to obtain the value of $\lambda $. Automatically we get the values of $x,y$, and $z$. Hence, we get the coordinates of the point of intersection of the given line and plane. Then we get the angle between the given line and plane by using the formula $\sin \theta =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|.\left| \overrightarrow{b} \right|}$.
Complete step-by-step solution:
Let us consider the given equation of line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\].
Now, we equate the above equation to some constant $\lambda $
So, \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}=\lambda \]
By the above equation, we get
$\begin{align}
& x-2=3\lambda \\
& \Rightarrow x=3\lambda +2..............\left( 1 \right) \\
& y+1=4\lambda \\
& \Rightarrow y=4\lambda -1..............\left( 2 \right) \\
& z-2=2\lambda \\
& \Rightarrow z=2\lambda +2..............\left( 3 \right) \\
\end{align}$
We were given that the equation of plane is $x-y+z-5=0$.
By substituting the equations (1), (2) and (3) in the above plane equation, we get
$\begin{align}
& \left( 3\lambda +2 \right)-\left( 4\lambda -1 \right)+\left( 2\lambda +2 \right)-5=0 \\
& \Rightarrow 3\lambda +2-4\lambda +1+2\lambda +2-5=0 \\
& \Rightarrow \lambda +5-5=0 \\
& \Rightarrow \lambda =0 \\
\end{align}$
Now, we substitute the value of $\lambda $ in equation (1), we get
$\begin{align}
& x=3\lambda +2 \\
& \Rightarrow x=3\left( 0 \right)+2 \\
& \Rightarrow x=0+2 \\
& \Rightarrow x=2 \\
\end{align}$
By substituting the value of $\lambda $ in equation (2), we get
$\begin{align}
& y+1=4\lambda \\
& \Rightarrow y+1=4\left( 0 \right) \\
& \Rightarrow y+1=0 \\
& \Rightarrow y=-1 \\
\end{align}$
We substitute the value of $\lambda $ in equation (3), we get
$\begin{align}
& z=2\lambda +2 \\
& \Rightarrow z=2\left( 0 \right)+2 \\
& \Rightarrow z=0+2 \\
& \Rightarrow z=2 \\
\end{align}$
So, we get $x=2,y=-1,z=2$.
Hence, the coordinates of the point of intersection of the given line and plane are $\left( 2,-1,2 \right)$.
Now, let us find the angle between the given line and the plane.
Let us consider the given line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\].
We can say that the line is parallel to the vector $3\hat{i}+4\hat{j}+2\hat{k}$.
Now, let us consider the given equation of the plane $x-y+z-5=0$.
We can say that the plane is normal to the vector $\hat{i}-\hat{j}+\hat{k}$.
Let us consider the formula for the angle between the line parallel to the vector $\overrightarrow{a}$ and the plane whose normal is $\overrightarrow{b}$, is $\sin \theta =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|.\left| \overrightarrow{b} \right|}$
By using the above formula, we get
$\sin \theta =\dfrac{\left( 3\hat{i}+4\hat{j}+2\hat{k} \right).\left( \hat{i}-\hat{j}+\hat{k} \right)}{\left| 3\hat{i}+4\hat{j}+2\hat{k} \right|.\left| \hat{i}-\hat{j}+\hat{k} \right|}$
Let us consider the formula, $\left( {{a}_{1}}\hat{i}+{{b}_{1}}\hat{j}+{{c}_{1}}\hat{k} \right).\left( {{a}_{2}}\hat{i}+{{b}_{2}}\hat{j}+{{c}_{2}}\hat{k} \right)={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}$ and $\left| a\hat{i}+b\hat{j}+c\hat{k} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$.
Using the above formulae, we get
$\begin{align}
& \sin \theta =\dfrac{\left( 3 \right)\left( 1 \right)+\left( 4 \right)\left( -1 \right)+\left( 2 \right)\left( 1 \right)}{\left( \sqrt{{{3}^{2}}+{{4}^{2}}+{{2}^{2}}} \right)\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}} \right)} \\
& \Rightarrow \sin \theta =\dfrac{3-4+2}{\left( \sqrt{29} \right)\left( \sqrt{3} \right)} \\
& \Rightarrow \sin \theta =\dfrac{1}{\sqrt{87}} \\
& \Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right) \\
\end{align}$
Therefore, the angle between the given line and plane is ${{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right)$.
Note: One may make a mistake by considering $-2\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k}$ as vector parallel to the line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\] instead of taking $3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k}$. But it is the point on the line not a vector parallel to it, $3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k}$ is the vector parallel to given line.
Complete step-by-step solution:
Let us consider the given equation of line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\].
Now, we equate the above equation to some constant $\lambda $
So, \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}=\lambda \]
By the above equation, we get
$\begin{align}
& x-2=3\lambda \\
& \Rightarrow x=3\lambda +2..............\left( 1 \right) \\
& y+1=4\lambda \\
& \Rightarrow y=4\lambda -1..............\left( 2 \right) \\
& z-2=2\lambda \\
& \Rightarrow z=2\lambda +2..............\left( 3 \right) \\
\end{align}$
We were given that the equation of plane is $x-y+z-5=0$.
By substituting the equations (1), (2) and (3) in the above plane equation, we get
$\begin{align}
& \left( 3\lambda +2 \right)-\left( 4\lambda -1 \right)+\left( 2\lambda +2 \right)-5=0 \\
& \Rightarrow 3\lambda +2-4\lambda +1+2\lambda +2-5=0 \\
& \Rightarrow \lambda +5-5=0 \\
& \Rightarrow \lambda =0 \\
\end{align}$
Now, we substitute the value of $\lambda $ in equation (1), we get
$\begin{align}
& x=3\lambda +2 \\
& \Rightarrow x=3\left( 0 \right)+2 \\
& \Rightarrow x=0+2 \\
& \Rightarrow x=2 \\
\end{align}$
By substituting the value of $\lambda $ in equation (2), we get
$\begin{align}
& y+1=4\lambda \\
& \Rightarrow y+1=4\left( 0 \right) \\
& \Rightarrow y+1=0 \\
& \Rightarrow y=-1 \\
\end{align}$
We substitute the value of $\lambda $ in equation (3), we get
$\begin{align}
& z=2\lambda +2 \\
& \Rightarrow z=2\left( 0 \right)+2 \\
& \Rightarrow z=0+2 \\
& \Rightarrow z=2 \\
\end{align}$
So, we get $x=2,y=-1,z=2$.
Hence, the coordinates of the point of intersection of the given line and plane are $\left( 2,-1,2 \right)$.
Now, let us find the angle between the given line and the plane.
Let us consider the given line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\].
We can say that the line is parallel to the vector $3\hat{i}+4\hat{j}+2\hat{k}$.
Now, let us consider the given equation of the plane $x-y+z-5=0$.
We can say that the plane is normal to the vector $\hat{i}-\hat{j}+\hat{k}$.
Let us consider the formula for the angle between the line parallel to the vector $\overrightarrow{a}$ and the plane whose normal is $\overrightarrow{b}$, is $\sin \theta =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|.\left| \overrightarrow{b} \right|}$
By using the above formula, we get
$\sin \theta =\dfrac{\left( 3\hat{i}+4\hat{j}+2\hat{k} \right).\left( \hat{i}-\hat{j}+\hat{k} \right)}{\left| 3\hat{i}+4\hat{j}+2\hat{k} \right|.\left| \hat{i}-\hat{j}+\hat{k} \right|}$
Let us consider the formula, $\left( {{a}_{1}}\hat{i}+{{b}_{1}}\hat{j}+{{c}_{1}}\hat{k} \right).\left( {{a}_{2}}\hat{i}+{{b}_{2}}\hat{j}+{{c}_{2}}\hat{k} \right)={{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}$ and $\left| a\hat{i}+b\hat{j}+c\hat{k} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$.
Using the above formulae, we get
$\begin{align}
& \sin \theta =\dfrac{\left( 3 \right)\left( 1 \right)+\left( 4 \right)\left( -1 \right)+\left( 2 \right)\left( 1 \right)}{\left( \sqrt{{{3}^{2}}+{{4}^{2}}+{{2}^{2}}} \right)\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}} \right)} \\
& \Rightarrow \sin \theta =\dfrac{3-4+2}{\left( \sqrt{29} \right)\left( \sqrt{3} \right)} \\
& \Rightarrow \sin \theta =\dfrac{1}{\sqrt{87}} \\
& \Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right) \\
\end{align}$
Therefore, the angle between the given line and plane is ${{\sin }^{-1}}\left( \dfrac{1}{\sqrt{87}} \right)$.
Note: One may make a mistake by considering $-2\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k}$ as vector parallel to the line \[\dfrac{x-2}{3}=\dfrac{y+1}{4}=\dfrac{z-2}{2}\] instead of taking $3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k}$. But it is the point on the line not a vector parallel to it, $3\overrightarrow{i}+4\overrightarrow{j}+2\overrightarrow{k}$ is the vector parallel to given line.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

