
Find $\dfrac{d}{d x}\left(x^{3} \tan ^{2} \dfrac{x}{2}\right)=$.
(1) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3x{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(2) ${{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(3) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(4) none of these
Answer
233.1k+ views
Hint: We can solve this using the product rule. That is $\dfrac{d}{d x} f(x) \cdot g(x)=\left[g(x) \times f^{\prime}(x)+f(x) \times g^{\prime}(x)\right]$. Here \[f(x)={{x}^{3}}\] and \[g(x)={{\tan }^{2}}\left( \dfrac{x}{2} \right)\]. After applying this rule and then by using the chain rule extended formula, we can find the solution for the given question.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

