
Evaluate the given indefinite integral: $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}$.
Answer
233.1k+ views
Hint: We start solving the problem by writing the given integrand into the general form of partial fractions. We find the values that were required to convert into partial fractions. After converting into partial fractions, we integrate each of them obtained and make the necessary calculations to get the required result.
Complete step-by-step solution:
According to the problem, we need to find the given indefinite integral $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}$.
We convert the integrand (the function that is to be integrated) into partial fractions so, that we get a denominator that doesn’t contain multiplication of two polynomials.
We can see that the polynomials $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$ cannot divide further into factor of form $\left( x+a \right)\left( a\in R \right)$.
We know that the numerator of the partial fraction will have the degree less than the degree of denominator. As the polynomials $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$ are not reducible into further polynomials of smaller degrees, we takes numerators as the polynomial with smaller degree. We take the numerators for the partial fractions as $\left( ax+b \right)$ and $\left( cx+d \right)$ for the fractions with denominators $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$.
So, the partial fractions for the given integrand can be written as:
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{ax+b}{{{x}^{2}}+4}+\dfrac{cx+d}{{{x}^{2}}+25}$ ---(1).
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{\left( \left( ax+b \right).\left( {{x}^{2}}+25 \right) \right)+\left( \left( cx+d \right).\left( {{x}^{2}}+4 \right) \right)}{\left( {{x}^{2}}+4 \right).\left( {{x}^{2}}+25 \right)}$.
$\Rightarrow {{x}^{2}}+1=\left( a{{x}^{3}}+b{{x}^{2}}+25ax+25b \right)+\left( c{{x}^{3}}+d{{x}^{2}}+4cx+4d \right)$.
$\Rightarrow {{x}^{2}}+1=\left( a+c \right){{x}^{3}}+\left( b+d \right){{x}^{2}}+\left( 25a+4c \right)x+\left( 25b+4d \right)$.
We compare coefficients of ${{x}^{3}}$ on both sides and we get $a+c=0$.
We get $a=-c$ ---(2).
We compare coefficients of ${{x}^{2}}$ on both sides and we get $b+d=1$.
We get $b=1-d$ ---(3).
We compare coefficients of $x$ on both sides and we get $25a+4c=0$.
From equation (2),
$\Rightarrow 25\left( -c \right)+4c=0$.
$\Rightarrow -25c+4c=0$.
$\Rightarrow -21c=0$.
$\Rightarrow c=0$.
We substitute the value of c in equation (2),
$\Rightarrow a=-0$.
$\Rightarrow a=0$.
We compare constant terms on both sides and we get $25b+4d=1$.
From equation (3),
$\Rightarrow 25\left( 1-d \right)+4d=1$.
$\Rightarrow 25-25d+4d=1$.
$\Rightarrow 25-1=25d-4d$.
$\Rightarrow 24=21d$.
$\Rightarrow d=\dfrac{24}{21}$.
$\Rightarrow d=\dfrac{8}{7}$.
We substitute the value of d in equation (3),
$\Rightarrow b=1-\dfrac{8}{7}$.
$\Rightarrow b=\dfrac{7-8}{7}$.
$\Rightarrow b=\dfrac{-1}{7}$.
Now, we substitute the values of a, b, c, and d in equation (1).
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{0x+\left( \dfrac{-1}{7} \right)}{{{x}^{2}}+4}+\dfrac{0x+\left( \dfrac{8}{7} \right)}{{{x}^{2}}+25}$.
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{-1}{7\left( {{x}^{2}}+4 \right)}+\dfrac{8}{7\left( {{x}^{2}}+25 \right)}$.
Now, we apply integration on both sides.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\int{\dfrac{-1}{7\left( {{x}^{2}}+4 \right)}dx}+\int{\dfrac{8}{7\left( {{x}^{2}}+25 \right)}dx}$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\dfrac{-1}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+4 \right)}dx}+\dfrac{8}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+25 \right)}dx}$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\dfrac{-1}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+{{2}^{2}} \right)}dx}+\dfrac{8}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+{{5}^{2}} \right)}dx}$.
We know that the integration of $\dfrac{1}{\left( {{a}^{2}}+{{x}^{2}} \right)}$ is defined as $\int{\dfrac{1}{\left( {{a}^{2}}+{{x}^{2}} \right)}dx}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-1}{7}\times \dfrac{1}{2}\times {{\tan }^{-1}}\left( \dfrac{x}{2} \right) \right)+\left( \dfrac{8}{7}\times \dfrac{1}{5}\times {{\tan }^{-1}}\left( \dfrac{x}{5} \right) \right)+C$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
We got the result after performing the integration $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}$ as$\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
∴ $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
Note: Before converting into fractions, we check whether the degree of the numerator is greater than the degree of the denominator or not. If it is, we divide the numerator until we get the degree of numerator less than the denominator to convert into partial fractions. If not, we directly convert them into partial fractions. If the polynomials of degree greater than 1 present in the denominator, we always check whether those functions are reducible or not.
Complete step-by-step solution:
According to the problem, we need to find the given indefinite integral $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}$.
We convert the integrand (the function that is to be integrated) into partial fractions so, that we get a denominator that doesn’t contain multiplication of two polynomials.
We can see that the polynomials $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$ cannot divide further into factor of form $\left( x+a \right)\left( a\in R \right)$.
We know that the numerator of the partial fraction will have the degree less than the degree of denominator. As the polynomials $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$ are not reducible into further polynomials of smaller degrees, we takes numerators as the polynomial with smaller degree. We take the numerators for the partial fractions as $\left( ax+b \right)$ and $\left( cx+d \right)$ for the fractions with denominators $\left( {{x}^{2}}+4 \right)$ and $\left( {{x}^{2}}+25 \right)$.
So, the partial fractions for the given integrand can be written as:
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{ax+b}{{{x}^{2}}+4}+\dfrac{cx+d}{{{x}^{2}}+25}$ ---(1).
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{\left( \left( ax+b \right).\left( {{x}^{2}}+25 \right) \right)+\left( \left( cx+d \right).\left( {{x}^{2}}+4 \right) \right)}{\left( {{x}^{2}}+4 \right).\left( {{x}^{2}}+25 \right)}$.
$\Rightarrow {{x}^{2}}+1=\left( a{{x}^{3}}+b{{x}^{2}}+25ax+25b \right)+\left( c{{x}^{3}}+d{{x}^{2}}+4cx+4d \right)$.
$\Rightarrow {{x}^{2}}+1=\left( a+c \right){{x}^{3}}+\left( b+d \right){{x}^{2}}+\left( 25a+4c \right)x+\left( 25b+4d \right)$.
We compare coefficients of ${{x}^{3}}$ on both sides and we get $a+c=0$.
We get $a=-c$ ---(2).
We compare coefficients of ${{x}^{2}}$ on both sides and we get $b+d=1$.
We get $b=1-d$ ---(3).
We compare coefficients of $x$ on both sides and we get $25a+4c=0$.
From equation (2),
$\Rightarrow 25\left( -c \right)+4c=0$.
$\Rightarrow -25c+4c=0$.
$\Rightarrow -21c=0$.
$\Rightarrow c=0$.
We substitute the value of c in equation (2),
$\Rightarrow a=-0$.
$\Rightarrow a=0$.
We compare constant terms on both sides and we get $25b+4d=1$.
From equation (3),
$\Rightarrow 25\left( 1-d \right)+4d=1$.
$\Rightarrow 25-25d+4d=1$.
$\Rightarrow 25-1=25d-4d$.
$\Rightarrow 24=21d$.
$\Rightarrow d=\dfrac{24}{21}$.
$\Rightarrow d=\dfrac{8}{7}$.
We substitute the value of d in equation (3),
$\Rightarrow b=1-\dfrac{8}{7}$.
$\Rightarrow b=\dfrac{7-8}{7}$.
$\Rightarrow b=\dfrac{-1}{7}$.
Now, we substitute the values of a, b, c, and d in equation (1).
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{0x+\left( \dfrac{-1}{7} \right)}{{{x}^{2}}+4}+\dfrac{0x+\left( \dfrac{8}{7} \right)}{{{x}^{2}}+25}$.
$\Rightarrow \dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}=\dfrac{-1}{7\left( {{x}^{2}}+4 \right)}+\dfrac{8}{7\left( {{x}^{2}}+25 \right)}$.
Now, we apply integration on both sides.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\int{\dfrac{-1}{7\left( {{x}^{2}}+4 \right)}dx}+\int{\dfrac{8}{7\left( {{x}^{2}}+25 \right)}dx}$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\dfrac{-1}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+4 \right)}dx}+\dfrac{8}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+25 \right)}dx}$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\dfrac{-1}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+{{2}^{2}} \right)}dx}+\dfrac{8}{7}\times \int{\dfrac{1}{\left( {{x}^{2}}+{{5}^{2}} \right)}dx}$.
We know that the integration of $\dfrac{1}{\left( {{a}^{2}}+{{x}^{2}} \right)}$ is defined as $\int{\dfrac{1}{\left( {{a}^{2}}+{{x}^{2}} \right)}dx}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-1}{7}\times \dfrac{1}{2}\times {{\tan }^{-1}}\left( \dfrac{x}{2} \right) \right)+\left( \dfrac{8}{7}\times \dfrac{1}{5}\times {{\tan }^{-1}}\left( \dfrac{x}{5} \right) \right)+C$.
$\Rightarrow \int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
We got the result after performing the integration $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}$ as$\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
∴ $\int{\dfrac{{{x}^{2}}+1}{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+25 \right)}dx}=\left( \dfrac{-{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{14} \right)+\left( \dfrac{8{{\tan }^{-1}}\left( \dfrac{x}{5} \right)}{35} \right)+C$.
Note: Before converting into fractions, we check whether the degree of the numerator is greater than the degree of the denominator or not. If it is, we divide the numerator until we get the degree of numerator less than the denominator to convert into partial fractions. If not, we directly convert them into partial fractions. If the polynomials of degree greater than 1 present in the denominator, we always check whether those functions are reducible or not.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

