
Differentiate.\[{\sin ^2}\left( {\ln \,x} \right)\].
Answer
577.8k+ views
Hint: We will suppose the given value\[\left( {y = {{\sin }^2}\left( {\ln \,x} \right)} \right)\]. Differentiate the given value with respect to x.
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
Complete step by step solution:-
Let \[y = {\sin ^2}\left( {\ln x} \right)\]
Differentiate both side with respect to x, we will get
\[
\dfrac{d}{{dx}}y = \dfrac{d}{{dx}}{\sin ^2}\left( {\log x} \right) \\
\dfrac{d}{{dx}}y = 2\sin \left( {\log x} \right)\dfrac{d}{{dx}}\sin \left( {\log x} \right) \\
\dfrac{{dy}}{{dx}} = 2\sin \left( {\log x} \right)\cos \left( {\log x} \right)\dfrac{d}{{dx}}\left( {\log x} \right) \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x}\dfrac{d}{{dx}}x \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \times 1 \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \\
\dfrac{{dy}}{{dx}} = \dfrac{{2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)}}{x} \\
\]
Additional information: Differentiation is a process of finding a function that outputs the rate of change of one variable with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: Students should follow product rule $\left[ {f\left( x \right)g\left( x \right)} \right]$ when we differentiate this value with respect to x then
$
\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] \\
= g\left( n \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] \\
$
DO not differentiate directly.
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
Complete step by step solution:-
Let \[y = {\sin ^2}\left( {\ln x} \right)\]
Differentiate both side with respect to x, we will get
\[
\dfrac{d}{{dx}}y = \dfrac{d}{{dx}}{\sin ^2}\left( {\log x} \right) \\
\dfrac{d}{{dx}}y = 2\sin \left( {\log x} \right)\dfrac{d}{{dx}}\sin \left( {\log x} \right) \\
\dfrac{{dy}}{{dx}} = 2\sin \left( {\log x} \right)\cos \left( {\log x} \right)\dfrac{d}{{dx}}\left( {\log x} \right) \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x}\dfrac{d}{{dx}}x \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \times 1 \\
\dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \\
\dfrac{{dy}}{{dx}} = \dfrac{{2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)}}{x} \\
\]
Additional information: Differentiation is a process of finding a function that outputs the rate of change of one variable with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: Students should follow product rule $\left[ {f\left( x \right)g\left( x \right)} \right]$ when we differentiate this value with respect to x then
$
\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] \\
= g\left( n \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] \\
$
DO not differentiate directly.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

