
Differentiate the given function: $y = 3\sec x - 10\cot x$ with respect to x.
Answer
601.8k+ views
Hint: To solve this question, we will differentiate the given function with respect to x and we will use the result of derivatives of $\sec x$ and $\cot x$.
Complete step-by-step answer:
We are given $y = 3\sec x - 10\cot x$. Now, we will differentiate both sides of the function with respect to x. On differentiating, we get
$\dfrac{{dy}}{{dx}} = 3\dfrac{{d(\sec x)}}{{dx}} - 10\dfrac{{d(\cot x)}}{{dx}}$ … (1)
Now, we know that differentiation of $\sec x$ i.e. $\dfrac{{d(\sec x)}}{{dx}} = \sec x\tan x$. Also, differentiation of $\cot x$ i.e. $\dfrac{{d(\cot x)}}{{dx}} = - \cos e{c^2}x$
Putting these values in equation (1), we get
$\dfrac{{dy}}{{dx}} = 3(\sec x\tan x) + 10\cos e{c^2}x$
Therefore, the differentiation of given function$y = 3\sec x - 10\cot x$ with respect to x is $\dfrac{{dy}}{{dx}} = 3\sec x\tan x + 10\cos e{c^2}x$.
Note: Whenever we have to find the differentiation of the given function, we will always use the result of differentiation of various functions like $\sec x$, $\cot x$, etc. These results are previously derived and are easy to use. To solve such types of questions which include differentiation, such results are always helpful, so it is recommended that students should know these results. Also, these results are derived at any moment because $\sec x = \dfrac{1}{{\cos x}}$ and $\cot x = \dfrac{1}{{\tan x}}$. So, by using the derivatives of $\cos x$ and $\tan x$, we can derive these results.
Complete step-by-step answer:
We are given $y = 3\sec x - 10\cot x$. Now, we will differentiate both sides of the function with respect to x. On differentiating, we get
$\dfrac{{dy}}{{dx}} = 3\dfrac{{d(\sec x)}}{{dx}} - 10\dfrac{{d(\cot x)}}{{dx}}$ … (1)
Now, we know that differentiation of $\sec x$ i.e. $\dfrac{{d(\sec x)}}{{dx}} = \sec x\tan x$. Also, differentiation of $\cot x$ i.e. $\dfrac{{d(\cot x)}}{{dx}} = - \cos e{c^2}x$
Putting these values in equation (1), we get
$\dfrac{{dy}}{{dx}} = 3(\sec x\tan x) + 10\cos e{c^2}x$
Therefore, the differentiation of given function$y = 3\sec x - 10\cot x$ with respect to x is $\dfrac{{dy}}{{dx}} = 3\sec x\tan x + 10\cos e{c^2}x$.
Note: Whenever we have to find the differentiation of the given function, we will always use the result of differentiation of various functions like $\sec x$, $\cot x$, etc. These results are previously derived and are easy to use. To solve such types of questions which include differentiation, such results are always helpful, so it is recommended that students should know these results. Also, these results are derived at any moment because $\sec x = \dfrac{1}{{\cos x}}$ and $\cot x = \dfrac{1}{{\tan x}}$. So, by using the derivatives of $\cos x$ and $\tan x$, we can derive these results.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

