
Derive an expression for electric field intensity due to an electric dipole at a point on its axial line.
Answer
515.8k+ views
Hint: To derive the expression for electric field due to an electric dipole, consider AB is an electric dipole of two point charges – q and + q separated by small distance 2d and then consider that P is a point along the axial line of the dipole at a distance r from the midpoint O of the electric dipole.
Complete step-by-step answer:
Note:
Formula used: $E = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{x^2}}}$
We have been asked to derive an expression for electric field intensity due to an electric dipole at a point on its axial line.
Now, let AB be an electric dipole of two-point charges -q and + q separated by a small distance 2d.
Also, consider that P is a point along the axial line of the dipole at a distance r from the midpoint O of the electric dipole.
Now, for better understanding refer the figure below:
The electric field at any point due to a charge q at a distance x is given by-
$ E = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{x^2}}} $
Now, the electric field at the point P due to + q charge placed at B is given by-
$ {E_1} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r - d)}^2}}} $ (along BP)
Here, (r – d) is the distance of point P from charge +q.
Also, the electric field at point due to – q charge placed at A-
$ {E_2} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r + d)}^2}}} $ (along PA)
Therefore, the magnitude of the resultant electric field (E) acts in the direction of the vector with a greater magnitude.
The resultant electric field at P is-
$ E = {E_1} + ( - {E_2}) $
Putting the values; we get-
$ E = \left[ {\dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r - d)}^2}}} - \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{q}{{{{(r + d)}^2}}}} \right] $ (along BP)
Simplifying further we get-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{1}{{{{(r - d)}^2}}} - \dfrac{1}{{{{(r + d)}^2}}}} \right] $
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{{{(r + d)}^2} - {{(r - d)}^2}}}{{{{(r - d)}^2}{{(r + d)}^2}}}} \right] $
Now, we can write \[{(r - d)^2}{(r + d)^2} = {({r^2} - {d^2})^2}\]
So, we get-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[{\dfrac{{{{(r)}^2} + {{(d)}^2} + 2rd - {{(r)}^2} - {{(d)}^2} + 2rd}}{{{{(r - d)}^2}{{(r + d)}^2}}}} \right] $
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{4rd}}{{{{({r^2} - {d^2})}^2}}}} \right] $
Now, if the point P is far away from the dipole, then \[d \ll r\]
So, the electric field will be-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\left[ {\dfrac{{4rd}}{{{{({r^2})}^2}}}} \right] = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{4rd}}{{{r^4}}} = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{4d}}{{{r^3}}} $
along BP
Also, electric dipole moment $ p = q \times 2d $ , so the expression will now become-
$ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{2(2d)}}{{{r^3}}} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{2p}}{{{r^3}}} $
E acts in the direction of the dipole moment.
Therefore, the expression for the electric field intensity due to an electric dipole at a point on its axial line is $ E = \dfrac{q}{{4\pi { \in _ \circ }}}.\dfrac{{2(2d)}}{{{r^3}}} = \dfrac{1}{{4\pi { \in _ \circ }}}.\dfrac{{2p}}{{{r^3}}} $
Whenever it is required to derive an expression, then always first draw a rough sketch depicting a dipole and a point on the axial line. As mentioned in the figure, first we found out the electric field at the point P due to + q charge placed at B and then due to charge – q placed at A. Then, the resultant electric field at P is found out. After making necessary assumptions, we got the expression for electric field intensity.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

