
Decay constant of radium is $\lambda $ . By a suitable process its compound radium bromide is obtained. The decay constant of radium bromide will be
A. $\lambda $
B. More than $\lambda $
C. Less than $\lambda $
D. zero
Answer
233.1k+ views
Hint: In order to solve this question, we should first know about decay constant. Decay constant is the proportionality constant between the rate of change of number of nuclei with nuclei in radioactive decay law and here we will discuss the decay constant of the chemical compound radium bromide and then will determine the correct option.
Complete step by step solution:
Before proceeding with the decay constant of the chemical compound radium bromide, we should know that all the chemical elements and compounds are not radioactive in nature, and most of the radioactive elements found naturally on earth.
So, Radium is one of the radioactive element which shows radioactivity and we have given to us that decay constant of radium element alone is $\lambda $ and after some chemical process the chemical compound which is formed with radium is radium bromide and as we know that bromide is a regular chemical element means it’s not a radioactive element.
Therefore, the radioactivity process of compound radium bromide is only affected by radium alone and as we have the decay constant of radium as $\lambda $ so the decay constant of radium bromide will be the same as that of radium which is $\lambda $.
Hence, the correct answer is option A.
Note: It should be remembered that, while calculating decay constant of chemical compounds, always check which element is radioactive out of them and also remember all the most known radioactive elements, and additionally decay constant is inversely proportional to half-life of the radioactive elements.
Complete step by step solution:
Before proceeding with the decay constant of the chemical compound radium bromide, we should know that all the chemical elements and compounds are not radioactive in nature, and most of the radioactive elements found naturally on earth.
So, Radium is one of the radioactive element which shows radioactivity and we have given to us that decay constant of radium element alone is $\lambda $ and after some chemical process the chemical compound which is formed with radium is radium bromide and as we know that bromide is a regular chemical element means it’s not a radioactive element.
Therefore, the radioactivity process of compound radium bromide is only affected by radium alone and as we have the decay constant of radium as $\lambda $ so the decay constant of radium bromide will be the same as that of radium which is $\lambda $.
Hence, the correct answer is option A.
Note: It should be remembered that, while calculating decay constant of chemical compounds, always check which element is radioactive out of them and also remember all the most known radioactive elements, and additionally decay constant is inversely proportional to half-life of the radioactive elements.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

