
${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)$ is equal to:
[a] $\sqrt{2}-1$
[b] $\dfrac{\pi }{4}$
[c] $\dfrac{3\pi }{4}$
[d] None of the above.
Answer
582k+ views
Hint: Use the fact that $\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1$ and then use the identities $\cot x=\tan \left( \dfrac{\pi }{2}-x \right),{{\cot }^{-1}}\left( \cot x \right)=x+n\pi $ where n is suitably chosen so that the value of $x+n\pi $ is within the interval $\left( 0,\pi \right)$. Alternatively use ${{\cos }^{-1}}\left( \cos x \right)=x+2m\pi $ , where m is suitably chosen so that the value of $x+2m\pi $ is within the interval $\left[ 0,\pi \right]$ and the assume the expression be equal to y. Take cot on both sides and then use $\cot 2x=\dfrac{{{\cot }^{2}}x-1}{2\cot x}$. Simplify to get the expression for coty. Find in the interval $\left( 0,\pi \right)$ the value at which the equation is satisfied. The value of y found is the answer of the question.
Complete step-by-step answer:
We know that $\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1$
Hence, we have $\tan \left( \dfrac{\pi }{2}-\dfrac{3\pi }{8} \right)=\sqrt{2}-1$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Put $x=\dfrac{3\pi }{8}$, we have
$\cot \left( \dfrac{3\pi }{8} \right)=\tan \left( \dfrac{\pi }{2}-\dfrac{3\pi }{8} \right)$
Hence, we have
$\cot \left( \dfrac{3\pi }{8} \right)=\sqrt{2}-1$
Hence, we have
${{\cot }^{-1}}\left( \sqrt{2}-1 \right)={{\cot }^{-1}}\left( \cot \left( \dfrac{3\pi }{8} \right) \right)=\dfrac{3\pi }{8}+n\pi $
Since \[\dfrac{3\pi }{8}\in \left( 0,\pi \right)\], we have n = 0.
Hence ${{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{8}$
Hence, we have $\cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)=\cos \left( 2\dfrac{3\pi }{8} \right)=\cos \left( \dfrac{3\pi }{4} \right)=\cos \left( \pi -\dfrac{\pi }{4} \right)$
Now, we know that $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ and $\cos \left( \pi -x \right)=-\cos x$
Put $x=\dfrac{\pi }{4}$, we get
$\cos \left( \pi -\dfrac{\pi }{4} \right)=-\cos \left( \dfrac{\pi }{4} \right)=\dfrac{-1}{\sqrt{2}}$
Hence , we have $\cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)=-\dfrac{1}{\sqrt{2}}$
Now, we know that $\arccos \left( -x \right)=\pi -\arccos x$
Hence, we have${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)={{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)$
Since $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , we have $\arccos \left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
Hence, we have
${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)=\pi -\dfrac{\pi }{4}=\dfrac{3\pi }{4}$
Hence, option [c] is correct.
Note: Alternatively, we can use ${{\cos }^{-1}}\left( \cos x \right)=x+2m\pi $ , where m is suitably chosen so that the value of $x+2m\pi $ is within the interval $\left[ 0,\pi \right]$.
Hence, we get
${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)=2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$.
Now let $y=2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$
Taking cot on both sides, we get
$\cot y=\cot \left( 2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)$
Now since cotx is periodic with period $\pi $, we have
$\cot y=\cot \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)$
Using $\cot 2x=\dfrac{{{\cot }^{2}}x-1}{2\cot x}$ , we get
$\cot y=\dfrac{{{\cot }^{2}}\left( {{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)-1}{2\cot \left( {{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)}$
Now we know that $\cot \left( {{\cot }^{-1}}x \right)=x$
Hence, we have
$\cot y=\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{2\left( \sqrt{2}-1 \right)}=\dfrac{2-2\sqrt{2}}{2\left( \sqrt{2}-1 \right)}=-1$
Hence, we have
$y=\dfrac{3\pi }{4}$, which is the same as obtained above.
[2] You can prove that $\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1$, by putting $x=\dfrac{\pi }{4}$ in the identity $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$.
Hence form a quadratic in tanx and solve for tanx. Remove the extraneous roots and arrive at a conclusion.
Complete step-by-step answer:
We know that $\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1$
Hence, we have $\tan \left( \dfrac{\pi }{2}-\dfrac{3\pi }{8} \right)=\sqrt{2}-1$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Put $x=\dfrac{3\pi }{8}$, we have
$\cot \left( \dfrac{3\pi }{8} \right)=\tan \left( \dfrac{\pi }{2}-\dfrac{3\pi }{8} \right)$
Hence, we have
$\cot \left( \dfrac{3\pi }{8} \right)=\sqrt{2}-1$
Hence, we have
${{\cot }^{-1}}\left( \sqrt{2}-1 \right)={{\cot }^{-1}}\left( \cot \left( \dfrac{3\pi }{8} \right) \right)=\dfrac{3\pi }{8}+n\pi $
Since \[\dfrac{3\pi }{8}\in \left( 0,\pi \right)\], we have n = 0.
Hence ${{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{8}$
Hence, we have $\cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)=\cos \left( 2\dfrac{3\pi }{8} \right)=\cos \left( \dfrac{3\pi }{4} \right)=\cos \left( \pi -\dfrac{\pi }{4} \right)$
Now, we know that $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ and $\cos \left( \pi -x \right)=-\cos x$
Put $x=\dfrac{\pi }{4}$, we get
$\cos \left( \pi -\dfrac{\pi }{4} \right)=-\cos \left( \dfrac{\pi }{4} \right)=\dfrac{-1}{\sqrt{2}}$
Hence , we have $\cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)=-\dfrac{1}{\sqrt{2}}$
Now, we know that $\arccos \left( -x \right)=\pi -\arccos x$
Hence, we have${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)={{\cos }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)$
Since $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , we have $\arccos \left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}$
Hence, we have
${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)=\pi -\dfrac{\pi }{4}=\dfrac{3\pi }{4}$
Hence, option [c] is correct.
Note: Alternatively, we can use ${{\cos }^{-1}}\left( \cos x \right)=x+2m\pi $ , where m is suitably chosen so that the value of $x+2m\pi $ is within the interval $\left[ 0,\pi \right]$.
Hence, we get
${{\cos }^{-1}}\left( \cos \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right) \right)=2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$.
Now let $y=2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$
Taking cot on both sides, we get
$\cot y=\cot \left( 2m\pi +2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)$
Now since cotx is periodic with period $\pi $, we have
$\cot y=\cot \left( 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)$
Using $\cot 2x=\dfrac{{{\cot }^{2}}x-1}{2\cot x}$ , we get
$\cot y=\dfrac{{{\cot }^{2}}\left( {{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)-1}{2\cot \left( {{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right)}$
Now we know that $\cot \left( {{\cot }^{-1}}x \right)=x$
Hence, we have
$\cot y=\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{2\left( \sqrt{2}-1 \right)}=\dfrac{2-2\sqrt{2}}{2\left( \sqrt{2}-1 \right)}=-1$
Hence, we have
$y=\dfrac{3\pi }{4}$, which is the same as obtained above.
[2] You can prove that $\tan \left( \dfrac{\pi }{8} \right)=\sqrt{2}-1$, by putting $x=\dfrac{\pi }{4}$ in the identity $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$.
Hence form a quadratic in tanx and solve for tanx. Remove the extraneous roots and arrive at a conclusion.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

