Consider the function \[y=f\left( x \right)\] defined parametrically by \[x=2t-\left| t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]. Then in the interval \[-1\le x\le 1\], the number of points at which \[f\left( x \right)\] is not differentiable is ____.
Answer
383.4k+ views
Hint: To find the point at which the function \[f\left( x \right)\] is not differentiable, find all possible values of \[t\] which satisfy the given conditions and then write the function by eliminating the variable \[t\] and check the differentiability of the function in the possible domain.
We have a function \[y=f\left( x \right)\] which is defined parametrically by \[x=2t-\left|t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]
We want to find the number of points at which the given function is not differentiable.
Hence, we will begin by writing the exact function by eliminating the variable \[t\].
Consider the case when \[t\ge 0\]. Thus, we have \[x=2t-\left| t \right|=2t-t=t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}+{{t}^{2}}=2{{t}^{2}}\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[-1\le t\le 1\]. But, we are only considering the values for \[t\ge 0\].
Hence, we need that \[0\le t\le 1\] such that \[x=t,y=2{{t}^{2}}\].
By eliminating the variable \[t\], we have \[x=t,y=2{{t}^{2}}\] for \[0\le t\le 1\].
Now, we will consider the case when \[t\le 0\]. Thus, we have \[x=2t-\left| t \right|=2t+t=3t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}-{{t}^{2}}=0\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[\dfrac{-1}{3}\le t\le \dfrac{1}{3}\]. But, we are only considering the values for \[t\le 0\].
Hence, we need that \[\dfrac{-1}{3}\le t\le 0\] such that \[x=3t,y=0\].
Thus, we have \[y=0,x=3t\] for \[\dfrac{-1}{3}\le t\le 0\].
Now, we will test the differentiability of the function \[y=f\left( x \right)\].
We observe that for \[\dfrac{-1}{3}\le t<0\], we have \[y=0,x=3t\]. Thus, the functions \[x\left( t \right)\] and \[y\left( t \right)\] are both polynomials.
We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Similarly, for range \[0We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Now, we need to check the differentiability around the point \[t=0\].
We know that a function \[y=f\left( x \right)\] is differentiable around a point \[x=a\] if \[f'\left( {{a}^{-}} \right)=f'\left( {{a}^{+}} \right)=f'\left( a \right)\].
For\[t=0\], we have \[y=0,x=3t\] for \[t<0\] and \[x=t,y=2{{t}^{2}}\]for\[t>0\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 0 \right)}{dt}=0,\dfrac{dx}{dt}=\dfrac{d\left( 3t \right)}{dt}=3\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 2{{t}^{2}} \right)}{dt}=4t,\dfrac{dx}{dt}=\dfrac{d\left( t \right)}{dt}=1\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,3 \right)\] for \[t<0\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,1 \right)\] for \[t>0\].
Hence, we observe that \[{{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{-}}}}\ne {{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{+}}}}\].
Thus, the function \[y=f\left( x \right)\] is not differentiable at \[t=0\].
Hence, the number of points of non-differentiability of the function is \[1\].
Note: It’s very necessary to observe the domain of possible points. We can’t define the function beyond the possible domain.
We have a function \[y=f\left( x \right)\] which is defined parametrically by \[x=2t-\left|t \right|,y={{t}^{2}}+t\left| t \right|,t\ in \mathbb{R}\]
We want to find the number of points at which the given function is not differentiable.
Hence, we will begin by writing the exact function by eliminating the variable \[t\].
Consider the case when \[t\ge 0\]. Thus, we have \[x=2t-\left| t \right|=2t-t=t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}+{{t}^{2}}=2{{t}^{2}}\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[-1\le t\le 1\]. But, we are only considering the values for \[t\ge 0\].
Hence, we need that \[0\le t\le 1\] such that \[x=t,y=2{{t}^{2}}\].
By eliminating the variable \[t\], we have \[x=t,y=2{{t}^{2}}\] for \[0\le t\le 1\].
Now, we will consider the case when \[t\le 0\]. Thus, we have \[x=2t-\left| t \right|=2t+t=3t\] and \[y={{t}^{2}}+t\left| t \right|={{t}^{2}}-{{t}^{2}}=0\].
We want the condition that \[-1\le x\le 1\]. Thus, we have \[\dfrac{-1}{3}\le t\le \dfrac{1}{3}\]. But, we are only considering the values for \[t\le 0\].
Hence, we need that \[\dfrac{-1}{3}\le t\le 0\] such that \[x=3t,y=0\].
Thus, we have \[y=0,x=3t\] for \[\dfrac{-1}{3}\le t\le 0\].
Now, we will test the differentiability of the function \[y=f\left( x \right)\].
We observe that for \[\dfrac{-1}{3}\le t<0\], we have \[y=0,x=3t\]. Thus, the functions \[x\left( t \right)\] and \[y\left( t \right)\] are both polynomials.
We know that polynomials are always differentiable in the given range. Hence, there’s no point in the given range at which the functions are not differentiable.
Similarly, for range \[0
Now, we need to check the differentiability around the point \[t=0\].
We know that a function \[y=f\left( x \right)\] is differentiable around a point \[x=a\] if \[f'\left( {{a}^{-}} \right)=f'\left( {{a}^{+}} \right)=f'\left( a \right)\].
For\[t=0\], we have \[y=0,x=3t\] for \[t<0\] and \[x=t,y=2{{t}^{2}}\]for\[t>0\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 0 \right)}{dt}=0,\dfrac{dx}{dt}=\dfrac{d\left( 3t \right)}{dt}=3\].
For \[t<0\], we have \[\dfrac{dy}{dt}=\dfrac{d\left( 2{{t}^{2}} \right)}{dt}=4t,\dfrac{dx}{dt}=\dfrac{d\left( t \right)}{dt}=1\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,3 \right)\] for \[t<0\].
As \[t\to 0\], we have \[\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)=\left( 0,1 \right)\] for \[t>0\].
Hence, we observe that \[{{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{-}}}}\ne {{\left( \dfrac{dy}{dt},\dfrac{dx}{dt} \right)}_{t\to {{0}^{+}}}}\].
Thus, the function \[y=f\left( x \right)\] is not differentiable at \[t=0\].
Hence, the number of points of non-differentiability of the function is \[1\].
Note: It’s very necessary to observe the domain of possible points. We can’t define the function beyond the possible domain.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

State the laws of reflection of light

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

One card is drawn from a well shuffled deck of 52 playing class 12 maths CBSE
