
Calculate the value of $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $.
A. ${}^{n + m + 1}{C_{n + 1}}$
B. ${}^{n + m + 2}{C_n}$
C. ${}^{n + m + 3}{C_{n - 1}}$
D. None of these
Answer
232.8k+ views
Hint: First we will expand $\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $ by putting $r = 0,1,2, \cdots ,m$. Then calculate the value of ${}^n{C_0}$ and ${}^{n + 1}{C_1}$ by using the combination formula. By using the combination property we will add consecutive terms to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Formula Used:
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
${}^n{C_r} = {}^n{C_{n - r}}$
Complete step by step solution:
Given summation is
$\sum\limits_{r = 0}^m {{}^{n + r}{C_r}} $
Now expand the summation by putting $r = 0,1,2, \cdots ,m$.
$ = {}^n{C_0} + {}^{n + 1}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Now applying the formula ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ in the first two terms
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{\left( {n + 1 - 1} \right)!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \dfrac{{n!}}{{n!0!}} + \dfrac{{\left( {n + 1} \right)!}}{{n!1!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Putting $0! = 1$ ; $1! = 1$ and apply the formula $r! = r\left( {r - 1} \right)!$
$ = 1 + \dfrac{{\left( {n + 1} \right) \cdot n!}}{{n!}} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = 1 + \left( {n + 1} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {n + 2} \right) + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the reverse formula of ${}^{n + 2}{C_1} = \dfrac{{\left( {n + 2} \right)!}}{{\left( {n + 2 - 1} \right)!1!}} = n + 2$
$ = {}^{n + 2}{C_1} + {}^{n + 2}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 2}{C_1} + {}^{n + 2}{C_2}} \right) + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ in third term and fourth term
$ = {}^{n + 3}{C_2} + {}^{n + 3}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 3}{C_2} + {}^{n + 3}{C_3}} \right) + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
Again, apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + 4}{C_3} + {}^{n + 4}{C_4} + \cdots + {}^{n + m}{C_m}$
$ = \left( {{}^{n + 4}{C_3} + {}^{n + 4}{C_4}} \right) + \cdots + {}^{n + m}{C_m}$
So on
$ = {}^{n + m}{C_{m - 1}} + {}^{n + m}{C_m}$
Apply the formula ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$
$ = {}^{n + m + 1}{C_m}$
Now we will apply ${}^n{C_r} = {}^n{C_{n - r}}$
$ = {}^{n + m + 1}{C_{n + m + 1 - m}}$
$ = {}^{n + m + 1}{C_{n + 1}}$
Option ‘A’ is correct
Note: To solve the question that is related to the combination, you must be aware of the formula of the combination. In this question first, expand the summation and use the combination formulas ${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$ and ${}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}$ to calculate the value of summation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

