
What is the area of the triangle with vertices $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$?
A. $\dfrac{1}{2}{\left| {z + iz} \right|^2}$
B. 1
C. $\dfrac{1}{2}$
D. $\dfrac{1}{2}{\left| z \right|^2}$
Answer
232.8k+ views
Hint: The angle between vertex $A\left( z \right)$ and $B\left( {iz} \right)$ is ${90^ \circ }$. So, the base of the triangle is $\left| z \right|$ and the height of the triangle is $\left| {iz} \right|$. By using the area formula of a triangle, we can calculate the area of the $\Delta ABC$.
Formula Used:
The angle between two complex numbers ${z_1} = {x_1} + i{y_1}$ and ${z_2} = {x_2} + i{y_2}$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$.
The modulus of complex number $z = x + iy$ is $\left| z \right| = \sqrt {{x^2} + {y^2}} $
Area of a triangle$ = \dfrac{1}{2} \times {\rm{base}} \times {\rm{height}}$
Complete step by step solution:
Given that the vertices of the triangle are $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$.

Image: Triangle ABC
Now putting $z = x + iy$ in vertices
The vertices are $A\left( {x + iy} \right)$, $B\left( {i\left[ {x + iy} \right]} \right)$, and $C\left( {x + iy + i\left[ {x + iy} \right]} \right)$ or $A\left( {x + iy} \right)$, $B\left( { - y + ix} \right)$, and $C\left( {x - y + iy + ix} \right)$. $\because i^{2}=-1$
Now applying the formula $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$ to calculate the angle between $A\left( {x + iy} \right)$ and $B\left( { - y + ix} \right)$.
The angle between $OA$ and $OB$ is
$\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 + \dfrac{y}{x} \cdot \left( { - \dfrac{x}{y}} \right)}}} \right)$
$ \Rightarrow \theta= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 - 1}}} \right)$
$ \Rightarrow \theta= {90^ \circ }$ [ Since $\tan {90^ \circ }$ is undefined]
So, the base and height of the triangle are $\left| {OA} \right|$ and $\left| {OB} \right|$.
Apply the modulus formula to calculate $\left| {OA} \right|$.
$\left| {OA} \right| = \left| z \right| = \sqrt {{x^2} + {y^2}} $
Apply the modulus formula to calculate $\left| {OB} \right|$.
$\left| {OB} \right| = \left| {iz} \right| = \sqrt {{{\left( { - y} \right)}^2} + {x^2}} = \sqrt {{x^2} + {y^2}} = \left| z \right|$
Apply the area formula to calculate the area of the triangle
The area of the triangle is
$ = \dfrac{1}{2} \times \left| {OA} \right| \times \left| {OB} \right|$
$ = \dfrac{1}{2} \times \left| z \right| \times \left| z \right|$
$ = \dfrac{1}{2}{\left| z \right|^2}$
Option ‘D’ is correct
Note: If the angle between two complex numbers is $90^{\circ}$, then these two complex numbers are the legs of a triangle. So half of the product of the magnitude of the complex numbers is the area of the triangle that is made by these two complex numbers.
Formula Used:
The angle between two complex numbers ${z_1} = {x_1} + i{y_1}$ and ${z_2} = {x_2} + i{y_2}$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$.
The modulus of complex number $z = x + iy$ is $\left| z \right| = \sqrt {{x^2} + {y^2}} $
Area of a triangle$ = \dfrac{1}{2} \times {\rm{base}} \times {\rm{height}}$
Complete step by step solution:
Given that the vertices of the triangle are $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$.

Image: Triangle ABC
Now putting $z = x + iy$ in vertices
The vertices are $A\left( {x + iy} \right)$, $B\left( {i\left[ {x + iy} \right]} \right)$, and $C\left( {x + iy + i\left[ {x + iy} \right]} \right)$ or $A\left( {x + iy} \right)$, $B\left( { - y + ix} \right)$, and $C\left( {x - y + iy + ix} \right)$. $\because i^{2}=-1$
Now applying the formula $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$ to calculate the angle between $A\left( {x + iy} \right)$ and $B\left( { - y + ix} \right)$.
The angle between $OA$ and $OB$ is
$\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 + \dfrac{y}{x} \cdot \left( { - \dfrac{x}{y}} \right)}}} \right)$
$ \Rightarrow \theta= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 - 1}}} \right)$
$ \Rightarrow \theta= {90^ \circ }$ [ Since $\tan {90^ \circ }$ is undefined]
So, the base and height of the triangle are $\left| {OA} \right|$ and $\left| {OB} \right|$.
Apply the modulus formula to calculate $\left| {OA} \right|$.
$\left| {OA} \right| = \left| z \right| = \sqrt {{x^2} + {y^2}} $
Apply the modulus formula to calculate $\left| {OB} \right|$.
$\left| {OB} \right| = \left| {iz} \right| = \sqrt {{{\left( { - y} \right)}^2} + {x^2}} = \sqrt {{x^2} + {y^2}} = \left| z \right|$
Apply the area formula to calculate the area of the triangle
The area of the triangle is
$ = \dfrac{1}{2} \times \left| {OA} \right| \times \left| {OB} \right|$
$ = \dfrac{1}{2} \times \left| z \right| \times \left| z \right|$
$ = \dfrac{1}{2}{\left| z \right|^2}$
Option ‘D’ is correct
Note: If the angle between two complex numbers is $90^{\circ}$, then these two complex numbers are the legs of a triangle. So half of the product of the magnitude of the complex numbers is the area of the triangle that is made by these two complex numbers.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

