Answer
Verified
462.9k+ views
Hint: Area inside a parabola can be found using definite integration from $x = a\,to\,x = 4a$. As integration always gives area under the curve being represented. We have to integrate the function $y = f(x)$here $y = \sqrt {4ax} $
Area $ = \int\limits_a^{4a} {f(x)dx} $
Complete step-by-step answer:
Here, $y = \sqrt {4ax} $
Area $ = \int\limits_a^{4a} {f(x)dx} $
Area $ = \int\limits_a^{4a} {\sqrt {4ax} dx} $
Area $ = \sqrt {4a} \int\limits_a^{4a} {\sqrt x } dx$ { $\sqrt {4a}$ is a constant and can be taken out of integration}
$
= \sqrt {4a} \left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_a^{4a} \\
= \sqrt {4a} \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_a^{4a} \\
= \dfrac{2}{3}\sqrt {4a} \left[ {{{\left( {4a} \right)}^{\dfrac{3}{2}}} - {{\left( a \right)}^{\dfrac{3}{2}}}} \right] \\
= \dfrac{2}{3}\sqrt {4a} \left[ {8{{\left( a \right)}^{\dfrac{3}{2}}} - {{\left( a \right)}^{\dfrac{3}{2}}}} \right] \\
= \dfrac{2}{3} \times 7{\left( a \right)^{\dfrac{3}{2}}} \times \sqrt {4a} \\
= \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units \\
$
Now this is the area of $y = + \sqrt {4ax}$ but not of $y = - \sqrt {4ax}$ which is also a solution of ${y^2} = 4ax$ therefore to find the solution of either we can integrate or we can conclude that by symmetry it is also equal to $ = \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units$
It can be clearly seen by the plot of ${y^2} = 4ax$
Total Area =$A + A = 2A$
Both graphs are symmetrical therefore total area equals to twice of area of $y = + \sqrt {4ax} $
So total area of ${y^2} = 4ax$ from $x = a\,to\,x = 4a$ is equal to $ = 2 \times \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units$$ = \dfrac{{56}}{3}{a^2}\,\,sq\,units$
So option D is correct.
Note: We have to take both $y = + \sqrt {4ax}$ and $y = - \sqrt {4ax}$ into consideration while always solving remember to simplify the equation to $y = f(x)$ as only it can be integrated don,t use ${y^2} = 4ax$ to be integrated. Use $y' = \sqrt {4ax}$ to be integrated. On parabola take symmetry into account along the respective axis. On integration area comes out to be negative we take the absolute value of area we can integrate $f(y) = \dfrac{{{y^2}}}{{4a}}$ to find the same solution but the procedure becomes lengthy and we don’t use this method.
Area $ = \int\limits_a^{4a} {f(x)dx} $
Complete step-by-step answer:
Here, $y = \sqrt {4ax} $
Area $ = \int\limits_a^{4a} {f(x)dx} $
Area $ = \int\limits_a^{4a} {\sqrt {4ax} dx} $
Area $ = \sqrt {4a} \int\limits_a^{4a} {\sqrt x } dx$ { $\sqrt {4a}$ is a constant and can be taken out of integration}
$
= \sqrt {4a} \left[ {\dfrac{{{x^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right]_a^{4a} \\
= \sqrt {4a} \left[ {\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right]_a^{4a} \\
= \dfrac{2}{3}\sqrt {4a} \left[ {{{\left( {4a} \right)}^{\dfrac{3}{2}}} - {{\left( a \right)}^{\dfrac{3}{2}}}} \right] \\
= \dfrac{2}{3}\sqrt {4a} \left[ {8{{\left( a \right)}^{\dfrac{3}{2}}} - {{\left( a \right)}^{\dfrac{3}{2}}}} \right] \\
= \dfrac{2}{3} \times 7{\left( a \right)^{\dfrac{3}{2}}} \times \sqrt {4a} \\
= \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units \\
$
Now this is the area of $y = + \sqrt {4ax}$ but not of $y = - \sqrt {4ax}$ which is also a solution of ${y^2} = 4ax$ therefore to find the solution of either we can integrate or we can conclude that by symmetry it is also equal to $ = \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units$
It can be clearly seen by the plot of ${y^2} = 4ax$
Total Area =$A + A = 2A$
Both graphs are symmetrical therefore total area equals to twice of area of $y = + \sqrt {4ax} $
So total area of ${y^2} = 4ax$ from $x = a\,to\,x = 4a$ is equal to $ = 2 \times \dfrac{{28}}{3}{a^{2\,}}\,\,sq\,units$$ = \dfrac{{56}}{3}{a^2}\,\,sq\,units$
So option D is correct.
Note: We have to take both $y = + \sqrt {4ax}$ and $y = - \sqrt {4ax}$ into consideration while always solving remember to simplify the equation to $y = f(x)$ as only it can be integrated don,t use ${y^2} = 4ax$ to be integrated. Use $y' = \sqrt {4ax}$ to be integrated. On parabola take symmetry into account along the respective axis. On integration area comes out to be negative we take the absolute value of area we can integrate $f(y) = \dfrac{{{y^2}}}{{4a}}$ to find the same solution but the procedure becomes lengthy and we don’t use this method.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE