
What are the roots of the equation $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$?
A. $k\pi ,k \in I$
B. $2k\pi ,k \in I$
C. $\dfrac{{k\pi }}{2},k \in I$
D. None of these
Answer
233.1k+ views
Hint: First we will apply half-angle trigonometry identity to solve the given equation. Then apply the general solution of $\sin \theta $ to find the solution of the given equation.
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Formula Used:
Half-angle trigonometry identity:
(a) $1 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}$
(b) $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
The general solution of the $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$.
Complete step by step solution:
Given equation is $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$.
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = \sin \theta \cdot \sin \dfrac{\theta }{2}$
Again, apply the half-angle trigonometry identity (b) on the right-side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \cdot \sin \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Now subtract $2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ from both sides
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} - 2{\sin ^2}\dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 0$
Take common $2{\sin ^2}\dfrac{\theta }{2}$ from the left side expression.
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2}\left( {1 - \cos \dfrac{\theta }{2}} \right) = 0$
Now apply the half-angle trigonometry identity (a) on the left side expression
$ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} \cdot 2{\sin ^2}\dfrac{\theta }{4} = 0$
Equate each vector by zero.
Either,
$2{\sin ^2}\dfrac{\theta }{2} = 0$
$ \Rightarrow \sin \dfrac{\theta }{2} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{2} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 2k\pi ,\,\,n \in I$
Or,
$2{\sin ^2}\dfrac{\theta }{4} = 0$
$ \Rightarrow \sin \dfrac{\theta }{4} = 0$
Apply the general solution formula
$ \Rightarrow \dfrac{\theta }{4} = k\pi ,\,\,n \in I$
$ \Rightarrow \theta = 4k\pi ,\,\,n \in I$
Therefore, the solution of $1 - \cos \theta = \sin \theta \cdot \sin \dfrac{\theta }{2}$ are $2k\pi ,\,\,n \in I$ and $4k\pi ,\,\,n \in I$.
Option ‘B’ is correct
Note: The general solution of $\sin \theta = 0$ is $\theta = n\pi ,\,\,n \in I$. The general solution of $\sin \theta = 1$ is $\theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{2}$ .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

