
Angle of minimum deviation of a prism of a refractive index 1.5 is equal to the angle of the prism of prism. Then the angle of the prism is:
A. ${41^{^ \circ }}24'$
B. ${80^ \circ }$
C. ${60^ \circ }$
D. ${82^ \circ }48'$
Answer
216.3k+ views
Hint In the question, the angle of minimum deviation of a prism of a refractive index is given. By using the trigonometric equations in the refractive index as per the given conditions and simplifying the equation, then we get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Complete step by step solution
A prism is a wedge-shaped body made from a refracting medium bounded by two plane faces inclined to each other at some angle. The two plane faces are called the refracting faces and the angle included between these faces is called the angle of the prism or the angle of the refraction.
Let ${\delta _m}$ be the angle of minimum deviation of the prism.
$A = {\delta _m}$
$\mu = \dfrac{{\sin \dfrac{{\left( {A + {\delta _m}} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the parameter of ${\delta _m}$in the above equation, we get
$\mu = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Substitute the known values in the above equation, we get
$1.5 = \dfrac{{\sin \dfrac{{\left( {A + A} \right)}}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = \dfrac{{\sin \,2\left( {\dfrac{A}{2}} \right)}}{{\sin \,\left( {\dfrac{A}{2}} \right)}}$
Performing the algebraic operation in the above equation, we get
$1.5 = \dfrac{{2\operatorname{Sin} \dfrac{A}{2}\cos \dfrac{A}{2}}}{{\operatorname{Sin} \left( {\dfrac{A}{2}} \right)}}$
Simplify the above equation, we get
$1.5 = 2\cos \,\dfrac{A}{2}$
Performing the arithmetic operation in the above equation, we get
$0.75 = \cos \dfrac{A}{2}$
Convert the equation in terms of A, we get
$\dfrac{A}{2} = {\cos ^{ - 1}}\left( {0.75} \right)$
Substitute the algebraic parameters in terms of the equation, we get
$A = 41 \times 2$
$A = {82^ \circ }.$
Therefore, the angle of the prism is ${82^ \circ }.$
Hence from the above options, option D is correct.
Note In the question, a refractive index is given. If here the angle of the prism is given. By substitute those values in the expression of the angle of the deviation of the prism. We get the value of the angle of the prism.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

