A parabola is drawn to pass through \[A\] and \[B\], the ends of a diameter of a given circle of radius \[a\] and to have as directrix a tangent to a concentric circle of radius \[b\]; the axes being \[AB\] and a perpendicular diameter, prove that the locus of the focus of the parabola is \[\dfrac{{{x}^{2}}}{{{b}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}-{{a}^{2}}}=1\].
Answer
328.2k+ views
Hint: Any point on the parabola is equidistant from the focus and directrix.
Let the equation of the circle be \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}.....\left( i \right)\]
In the question, it is given that \[A\] and \[B\] are the ends of the diameter of the circle.
So, let \[A=\left( a,0 \right)\] and \[B=\left( -a,0 \right)\]
In the question, it is given that the radius of the concentric circle is \[b\].
So, let the equation of concentric circle be \[{{x}^{2}}+{{y}^{2}}={{b}^{2}}....\left( ii \right)\]
Now, the directrix of the parabola is tangent to the concentric circle.
First, we find the equation of tangent to the concentric circle.
We know, the equation of tangent to a circle \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\] in slope form is given as \[y=mx\pm r\sqrt{1+{{m}^{2}}}\].
So, equation of tangent to \[\left( ii \right)\]is
\[y=mx+b\sqrt{{{m}^{2}}+1}\]
Or \[mx-y+b\sqrt{{{m}^{2}}+1}=0....\left( iii \right)\]
Equation \[\left( iii \right)\] is also the directrix to the parabola.
Now, we want to find the locus of the focus of the parabola.
So, let the focus of the parabola be \[F\left( h,k \right)\].
Now, by the definition of a parabola, any point on the parabola is equidistant from the focus and the directrix.
Now, from the question, we know that the ends of diameter of \[\left( i \right)\]i.e. \[A\] and \[B\] lie on the parabola.
We know that the distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and the distance of a point \[({{x}_{1}},{{y}_{1}})\] from the line \[lx+my+n=0\] is given
as \[d=\dfrac{l{{x}_{1}}+m{{y}_{1}}+n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}\].
So, for \[A\left( a,0 \right)\], we have
\[\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( iv \right)\]
For \[B\left( -a,0 \right)\], we have
\[\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( -a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{-am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( v \right)\]
Adding \[\left( iv \right)\]and \[\left( v \right)\], we have
\[\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{2b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b\]
\[\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b-\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}\]
Now, on squaring both sides we get,
\[{{h}^{2}}+2ah+{{a}^{2}}+{{k}^{2}}=4{{b}^{2}}+{{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}-4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}}\]
\[\begin{align}
& \Rightarrow 4{{b}^{2}}-4ah=4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\
& \Rightarrow {{b}^{2}}-ah=b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\
\end{align}\]
Now, let’s square both sides again to remove the square root sign. We get \[{{b}^{4}}+{{a}^{2}}{{h}^{2}}-2{{b}^{2}}ah={{b}^{2}}({{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}})\]
On dividing both sides with \[{{b}^{2}}\], we get
\[{{b}^{2}}+\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}-2ah={{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}\]
\[\Rightarrow {{b}^{2}}-{{a}^{2}}-{{k}^{2}}={{h}^{2}}-\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}\]
\[\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(1-\dfrac{{{a}^{2}}}{{{b}^{2}}})\]
\[\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(\dfrac{{{b}^{2}}-{{a}^{2}}}{{{b}^{2}}})\]
\[\Rightarrow 1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}=\dfrac{{{h}^{2}}}{{{b}^{2}}}\]
\[\Rightarrow 1=\dfrac{{{h}^{2}}}{{{b}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}\]
So, the locus of \[(h,k)\] is given by replacing \[(h,k)\]by \[(x,y)\]
So, the equation of the locus is given as \[\dfrac{{{x}^{2}}}{{{b}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}-{{a}^{2}}}=1\] \[\]\[\]
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Let the equation of the circle be \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}.....\left( i \right)\]
In the question, it is given that \[A\] and \[B\] are the ends of the diameter of the circle.

So, let \[A=\left( a,0 \right)\] and \[B=\left( -a,0 \right)\]
In the question, it is given that the radius of the concentric circle is \[b\].
So, let the equation of concentric circle be \[{{x}^{2}}+{{y}^{2}}={{b}^{2}}....\left( ii \right)\]
Now, the directrix of the parabola is tangent to the concentric circle.
First, we find the equation of tangent to the concentric circle.
We know, the equation of tangent to a circle \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\] in slope form is given as \[y=mx\pm r\sqrt{1+{{m}^{2}}}\].
So, equation of tangent to \[\left( ii \right)\]is
\[y=mx+b\sqrt{{{m}^{2}}+1}\]
Or \[mx-y+b\sqrt{{{m}^{2}}+1}=0....\left( iii \right)\]
Equation \[\left( iii \right)\] is also the directrix to the parabola.
Now, we want to find the locus of the focus of the parabola.
So, let the focus of the parabola be \[F\left( h,k \right)\].
Now, by the definition of a parabola, any point on the parabola is equidistant from the focus and the directrix.
Now, from the question, we know that the ends of diameter of \[\left( i \right)\]i.e. \[A\] and \[B\] lie on the parabola.
We know that the distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and the distance of a point \[({{x}_{1}},{{y}_{1}})\] from the line \[lx+my+n=0\] is given
as \[d=\dfrac{l{{x}_{1}}+m{{y}_{1}}+n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}\].
So, for \[A\left( a,0 \right)\], we have
\[\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}=\dfrac{am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( iv \right)\]
For \[B\left( -a,0 \right)\], we have
\[\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{m\left( -a \right)-1\left( 0 \right)+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{-am+b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}....\left( v \right)\]
Adding \[\left( iv \right)\]and \[\left( v \right)\], we have
\[\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=\dfrac{2b\sqrt{{{m}^{2}}+1}}{\sqrt{{{m}^{2}}+1}}\]
\[\Rightarrow \sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}+\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b\]
\[\sqrt{{{\left( h+a \right)}^{2}}+{{k}^{2}}}=2b-\sqrt{{{\left( h-a \right)}^{2}}+{{k}^{2}}}\]
Now, on squaring both sides we get,
\[{{h}^{2}}+2ah+{{a}^{2}}+{{k}^{2}}=4{{b}^{2}}+{{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}-4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}}\]
\[\begin{align}
& \Rightarrow 4{{b}^{2}}-4ah=4b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\
& \Rightarrow {{b}^{2}}-ah=b\sqrt{{{(h-a)}^{2}}+{{k}^{2}}} \\
\end{align}\]
Now, let’s square both sides again to remove the square root sign. We get \[{{b}^{4}}+{{a}^{2}}{{h}^{2}}-2{{b}^{2}}ah={{b}^{2}}({{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}})\]
On dividing both sides with \[{{b}^{2}}\], we get
\[{{b}^{2}}+\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}-2ah={{h}^{2}}-2ah+{{a}^{2}}+{{k}^{2}}\]
\[\Rightarrow {{b}^{2}}-{{a}^{2}}-{{k}^{2}}={{h}^{2}}-\dfrac{{{a}^{2}}{{h}^{2}}}{{{b}^{2}}}\]
\[\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(1-\dfrac{{{a}^{2}}}{{{b}^{2}}})\]
\[\Rightarrow ({{b}^{2}}-{{a}^{2}})(1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}})={{h}^{2}}(\dfrac{{{b}^{2}}-{{a}^{2}}}{{{b}^{2}}})\]
\[\Rightarrow 1-\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}=\dfrac{{{h}^{2}}}{{{b}^{2}}}\]
\[\Rightarrow 1=\dfrac{{{h}^{2}}}{{{b}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}-{{a}^{2}}}\]
So, the locus of \[(h,k)\] is given by replacing \[(h,k)\]by \[(x,y)\]
So, the equation of the locus is given as \[\dfrac{{{x}^{2}}}{{{b}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}-{{a}^{2}}}=1\] \[\]\[\]
Note: The distance between two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is given as \[d=\sqrt{{{({{x}_{1}}-{{x}_{2}})}^{2}}+{{({{y}_{1}}-{{y}_{2}})}^{2}}}\] and not \[d=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}+{{({{y}_{1}}+{{y}_{2}})}^{2}}}\]. It is a very common mistake made by students.
Last updated date: 03rd Jun 2023
•
Total views: 328.2k
•
Views today: 5.85k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
