
A line is such that its segment between the straight lines $5x-y-4=0$ and $3x+4y-4=0$ is bisected at the point $(1,5)$, then its equation is
A. $83x-35y+92=0$
B. $35x-83y+92=0$
C. $35x+35y+92=0$
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the equation of the line which is segmented between the given lines. To do this, the symmetric form of the line when it is segmented between two lines is used.
Formula used: The symmetric form of the equation of the line passing through the point $({{x}_{1}},{{y}_{1}})$ and having inclination of $\theta $ is
$\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }$ here $\theta \in \left( 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right)$
If a point $P(x,y)$ on the line which is passing through the point $A({{x}_{1}},{{y}_{1}})$ and having an inclination $\theta $, then $x={{x}_{1}}+r\cos \theta $, $y={{y}_{1}}+r\sin \theta $ where $\left| r \right|$ is the distance from the points $A$ to $P$. These equations are called parametric equations.
Complete step by step solution: Given that, the required line is bisected at the point $(1,5)$ and segmented between the two lines.
So, the line is
$\begin{align}
& \dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta } \\
& \Rightarrow \dfrac{x-1}{\cos \theta }=\dfrac{y-5}{\sin \theta }=r\text{ }...(1) \\
\end{align}$
Consider the given point as $M$. i.e., $M(1,5)$
Here $r$ is the distance of any point $(x,y)$ on the given lines from the point $M(1,5)$.
So, for the two given lines $5x-y-4=0$ and $3x+4y-4=0$, consider two points $A$ and $B$ which lie on them.
So, we can write,
$\begin{align}
& A(1+r\cos \theta ,5+r\sin \theta ) \\
& B(1-r\cos \theta ,5-r\sin \theta ) \\
\end{align}$
Thus, the point $A(1+r\cos \theta ,5+r\sin \theta )$ lies on the line $5x-y-4=0$.
On substituting, we get
$\begin{align}
& 5x-y-4=0 \\
& \Rightarrow 5(1+r\cos \theta )-(5+r\sin \theta )-4=0 \\
& \Rightarrow 5+5r\cos \theta -5-r\sin \theta -4=0 \\
& \Rightarrow 5r\cos \theta -r\sin \theta -4=0 \\
& \Rightarrow r(5\cos \theta -\sin \theta )=4\text{ }...(2) \\
\end{align}$
The point $B(1-r\cos \theta ,5-r\sin \theta )$ lies on the line $3x+4y-4=0$.
On substituting, we get
$\begin{align}
& 3x+4y-4=0 \\
& \Rightarrow 3(1-r\cos \theta )+4(5-r\sin \theta )-4=0 \\
& \Rightarrow 3-3r\cos \theta \text{+}20-4r\sin \theta -4=0 \\
& \Rightarrow 3r\cos \theta -4r\sin \theta =19 \\
& \Rightarrow r(3\cos \theta -4\sin \theta )=19\text{ }...(3) \\
\end{align}$
From (2) and (3), we get
\[\begin{align}
& \dfrac{4}{5\cos \theta -\sin \theta }=\dfrac{19}{3\cos \theta -4\sin \theta } \\
& \Rightarrow 12\cos \theta -16\sin \theta =95\cos \theta -19\sin \theta \\
& \Rightarrow 83\cos \theta =35\sin \theta \\
& \Rightarrow \dfrac{83}{\sin \theta }=\dfrac{35}{\cos \theta }\text{ }...(4) \\
\end{align}\]
Thus, from (1) and (4), we get
$\begin{align}
& \dfrac{x-1}{35}=\dfrac{y-5}{83} \\
& \Rightarrow 83x-83=35y-175 \\
& \Rightarrow 83x-35y+92=0 \\
\end{align}$
Therefore, the line is $83x-35y+92=0$.
Thus, Option (A) is correct.
Note: Here we need to remember that, the parameter $r$ is the distance from the point $M(1,5)$ to any points on the given lines. So, this will help us to find the required equation of the line.
Formula used: The symmetric form of the equation of the line passing through the point $({{x}_{1}},{{y}_{1}})$ and having inclination of $\theta $ is
$\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }$ here $\theta \in \left( 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right)$
If a point $P(x,y)$ on the line which is passing through the point $A({{x}_{1}},{{y}_{1}})$ and having an inclination $\theta $, then $x={{x}_{1}}+r\cos \theta $, $y={{y}_{1}}+r\sin \theta $ where $\left| r \right|$ is the distance from the points $A$ to $P$. These equations are called parametric equations.
Complete step by step solution: Given that, the required line is bisected at the point $(1,5)$ and segmented between the two lines.
So, the line is
$\begin{align}
& \dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta } \\
& \Rightarrow \dfrac{x-1}{\cos \theta }=\dfrac{y-5}{\sin \theta }=r\text{ }...(1) \\
\end{align}$
Consider the given point as $M$. i.e., $M(1,5)$
Here $r$ is the distance of any point $(x,y)$ on the given lines from the point $M(1,5)$.
So, for the two given lines $5x-y-4=0$ and $3x+4y-4=0$, consider two points $A$ and $B$ which lie on them.
So, we can write,
$\begin{align}
& A(1+r\cos \theta ,5+r\sin \theta ) \\
& B(1-r\cos \theta ,5-r\sin \theta ) \\
\end{align}$
Thus, the point $A(1+r\cos \theta ,5+r\sin \theta )$ lies on the line $5x-y-4=0$.
On substituting, we get
$\begin{align}
& 5x-y-4=0 \\
& \Rightarrow 5(1+r\cos \theta )-(5+r\sin \theta )-4=0 \\
& \Rightarrow 5+5r\cos \theta -5-r\sin \theta -4=0 \\
& \Rightarrow 5r\cos \theta -r\sin \theta -4=0 \\
& \Rightarrow r(5\cos \theta -\sin \theta )=4\text{ }...(2) \\
\end{align}$
The point $B(1-r\cos \theta ,5-r\sin \theta )$ lies on the line $3x+4y-4=0$.
On substituting, we get
$\begin{align}
& 3x+4y-4=0 \\
& \Rightarrow 3(1-r\cos \theta )+4(5-r\sin \theta )-4=0 \\
& \Rightarrow 3-3r\cos \theta \text{+}20-4r\sin \theta -4=0 \\
& \Rightarrow 3r\cos \theta -4r\sin \theta =19 \\
& \Rightarrow r(3\cos \theta -4\sin \theta )=19\text{ }...(3) \\
\end{align}$
From (2) and (3), we get
\[\begin{align}
& \dfrac{4}{5\cos \theta -\sin \theta }=\dfrac{19}{3\cos \theta -4\sin \theta } \\
& \Rightarrow 12\cos \theta -16\sin \theta =95\cos \theta -19\sin \theta \\
& \Rightarrow 83\cos \theta =35\sin \theta \\
& \Rightarrow \dfrac{83}{\sin \theta }=\dfrac{35}{\cos \theta }\text{ }...(4) \\
\end{align}\]
Thus, from (1) and (4), we get
$\begin{align}
& \dfrac{x-1}{35}=\dfrac{y-5}{83} \\
& \Rightarrow 83x-83=35y-175 \\
& \Rightarrow 83x-35y+92=0 \\
\end{align}$
Therefore, the line is $83x-35y+92=0$.
Thus, Option (A) is correct.
Note: Here we need to remember that, the parameter $r$ is the distance from the point $M(1,5)$ to any points on the given lines. So, this will help us to find the required equation of the line.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

