
A line \[4x + y = 1\] passes through the point \[A\left( {2, - 7} \right)\] meets the lines \[BC\] whose equation is \[3x - 4y + 1 = 0\] at the point \[B\]. The equation of the line \[AC\] so that \[AB = AC\], is
A. \[52x + 89y + 519 = 0\]
B. \[52x + 89y - 519 = 0\]
C. \[89x + 52y + 519 = 0\]
D. \[89x + 52y - 519 = 0\]
Answer
232.8k+ views
Hint: In this question, we first find the slope of the line \[4x + y = 1\] and the second line \[3x - 4y + 1 = 0\] , and then we find the angle between these two lines by the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\] and finally substitute the given points in it to get the desired result
Formula Used:
1. \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
Where \[m\] is the slope of the line
2. \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Complete step-by-step solution:
Given that
\[
4x + y = 1...\left( 1 \right) \\
3x - 4y + 1 = 0...\left( 2 \right)
\]
Rewrite equation \[\left( 1 \right)\] as:
\[
y = 1 - 4x \\
y = - 4x + 1 \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = - 4\]
Rewrite equation \[\left( 2 \right)\] as:
\[
- 4y = - 3x - 1 \\
- 4y = - \left( {3x + 1} \right) \\
4y = 3x + 1 \\
y = \dfrac{3}{4}x + \dfrac{1}{4} \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = \dfrac{3}{4}\]

Image: Triangle ABC with A vertex (2,-7)
Now we have two slopes which is \[m = \dfrac{3}{4}\] and \[m = - 4\] of \[BC\] and \[AB\]
We know the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
For line \[AB\] and \[BC\]:
\[\alpha = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\alpha = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|} \right) \\
\tan \,\alpha = \left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|...\left( 3 \right)
\]
Let us assume that \[{m_1} = \dfrac{3}{4}\]be the slope of \[BC\] and \[m\] be the slope of \[AC\]
\[
\theta = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4} \times m} \right)}}} \right| \\
= {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|
\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\theta = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4}m} \right)}}} \right|} \right) \\
\tan \,\theta = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|...\left( 4 \right)
\]
Now we are given that \[AB = AC\]
So, \[\tan \,\alpha = \tan \,\theta \]
Substitute the value from equation \[\left( 3 \right)\] and \[\left( 4 \right)\]:
\[
\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \dfrac{3}{4} \times \left( { - 4} \right)}}} \right| = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right| \\
\left| {\dfrac{{\dfrac{3}{4} + 4}}{{1 + 3\left( { - 1} \right)}}} \right| = \left| {\dfrac{{\dfrac{{3 - 4m}}{4}}}{{\dfrac{{4 + 3m}}{4}}}} \right| \\
\left| {\dfrac{{\dfrac{{3 + 16}}{4}}}{{1 - 3}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\left| {\dfrac{{19}}{{4 \times \left( { - 2} \right)}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right|
\]
Further solving,
\[
\left| {\dfrac{{19}}{{ - 8}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\dfrac{{19}}{8} = \dfrac{{3 - 4m}}{{4 + 3m}} \\
19\left( {4 + 3m} \right) = 8\left( {3 - 4m} \right) \\
76 + 57m = 24 - 32m
\]
Furthermore,
\[
57m + 32m = 24 - 76 \\
89m = - 52 \\
m = \dfrac{{ - 52}}{{89}}
\]
Also given that the line passes through the point \[A\left( {2, - 7} \right)\]
We know the formula of equation of line is \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Substituting all the values in above formula:
\[y + 7 = \dfrac{{ - 52}}{{89}}\left( {x - 2} \right)\]
Multiply 89 on both sides:
\[
89\left( {y + 7} \right) = - 52\left( {x - 2} \right) \\
89y + 623 = - 52x + 104 \\
89y + 52x + 623 - 104 = 0 \\
89y + 52x + 519 = 0
\]
Hence, option (A) is correct
Note: Students must be careful while finding the slope of the given line. Also, students must be careful while finding the angle between these two lines and also substitute the values of slope in the formula correctly to get the desired result.
Formula Used:
1. \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
Where \[m\] is the slope of the line
2. \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Complete step-by-step solution:
Given that
\[
4x + y = 1...\left( 1 \right) \\
3x - 4y + 1 = 0...\left( 2 \right)
\]
Rewrite equation \[\left( 1 \right)\] as:
\[
y = 1 - 4x \\
y = - 4x + 1 \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = - 4\]
Rewrite equation \[\left( 2 \right)\] as:
\[
- 4y = - 3x - 1 \\
- 4y = - \left( {3x + 1} \right) \\
4y = 3x + 1 \\
y = \dfrac{3}{4}x + \dfrac{1}{4} \\
\]
Now compare the above equation with the standard equation of the line \[y = mx + b\]:
\[m = \dfrac{3}{4}\]

Image: Triangle ABC with A vertex (2,-7)
Now we have two slopes which is \[m = \dfrac{3}{4}\] and \[m = - 4\] of \[BC\] and \[AB\]
We know the formula \[\theta = {\tan ^{ - 1}}\left| {\dfrac{{{m_1} - m}}{{1 + {m_1}m}}} \right|\]
For line \[AB\] and \[BC\]:
\[\alpha = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\alpha = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|} \right) \\
\tan \,\alpha = \left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \left( {\dfrac{3}{4} \times \left( { - 4} \right)} \right)}}} \right|...\left( 3 \right)
\]
Let us assume that \[{m_1} = \dfrac{3}{4}\]be the slope of \[BC\] and \[m\] be the slope of \[AC\]
\[
\theta = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4} \times m} \right)}}} \right| \\
= {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|
\]
By taking \[\tan \] on both sides, we get
\[
\tan \,\theta = \tan \left( {{{\tan }^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \left( {\dfrac{3}{4}m} \right)}}} \right|} \right) \\
\tan \,\theta = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right|...\left( 4 \right)
\]
Now we are given that \[AB = AC\]
So, \[\tan \,\alpha = \tan \,\theta \]
Substitute the value from equation \[\left( 3 \right)\] and \[\left( 4 \right)\]:
\[
\left| {\dfrac{{\dfrac{3}{4} - \left( { - 4} \right)}}{{1 + \dfrac{3}{4} \times \left( { - 4} \right)}}} \right| = \left| {\dfrac{{\dfrac{3}{4} - m}}{{1 + \dfrac{3}{4}m}}} \right| \\
\left| {\dfrac{{\dfrac{3}{4} + 4}}{{1 + 3\left( { - 1} \right)}}} \right| = \left| {\dfrac{{\dfrac{{3 - 4m}}{4}}}{{\dfrac{{4 + 3m}}{4}}}} \right| \\
\left| {\dfrac{{\dfrac{{3 + 16}}{4}}}{{1 - 3}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\left| {\dfrac{{19}}{{4 \times \left( { - 2} \right)}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right|
\]
Further solving,
\[
\left| {\dfrac{{19}}{{ - 8}}} \right| = \left| {\dfrac{{3 - 4m}}{{4 + 3m}}} \right| \\
\dfrac{{19}}{8} = \dfrac{{3 - 4m}}{{4 + 3m}} \\
19\left( {4 + 3m} \right) = 8\left( {3 - 4m} \right) \\
76 + 57m = 24 - 32m
\]
Furthermore,
\[
57m + 32m = 24 - 76 \\
89m = - 52 \\
m = \dfrac{{ - 52}}{{89}}
\]
Also given that the line passes through the point \[A\left( {2, - 7} \right)\]
We know the formula of equation of line is \[y - {y_1} = m\left( {x - {x_1}} \right)\]
Substituting all the values in above formula:
\[y + 7 = \dfrac{{ - 52}}{{89}}\left( {x - 2} \right)\]
Multiply 89 on both sides:
\[
89\left( {y + 7} \right) = - 52\left( {x - 2} \right) \\
89y + 623 = - 52x + 104 \\
89y + 52x + 623 - 104 = 0 \\
89y + 52x + 519 = 0
\]
Hence, option (A) is correct
Note: Students must be careful while finding the slope of the given line. Also, students must be careful while finding the angle between these two lines and also substitute the values of slope in the formula correctly to get the desired result.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

