
A die is tossed thrice. Find the probability of getting an odd number at least once.
Answer
512.4k+ views
Hint:Use the fact that if A, B and C are independent events then $P\left( A\bigcap B\bigcap C \right)=P\left( A \right)P\left( B \right)P\left( C \right)$. Use the fact that if A, B and C are mutually exclusive events then $P\left( A\bigcup B\bigcup C \right)=P\left( A \right)+P\left( B \right)+P\left( C \right)$. Use the fact that the probability of an event E is given by $P\left( E \right)=\dfrac{n\left( E \right)}{n\left( S \right)}$, where n(E) is the number of elements in E and n(S) is the number of elements in the sample space. Use the fact that each toss of the die is independent of the other toss.
Complete step-by-step answer:
Let A: Getting an odd number on the first toss
B: Getting an odd number on the second toss
C: Getting an odd number on the third toss.
Here $P\left( A \right)=\dfrac{n\left( E \right)}{n\left( S \right)}=\dfrac{3}{6}=\dfrac{1}{2}$ and $P\left( A' \right)=1-\dfrac{1}{2}=\dfrac{1}{2}$
Hence, we have $P\left( A \right)=P\left( A' \right)=P\left( B \right)=P\left( B' \right)=P\left( C \right)=P\left( C' \right)=\dfrac{1}{2}$
Then E: The event of getting an odd number at least once is given by
$E=\left( A\bigcap B'\bigcap C' \right)\bigcup \left( A'\bigcap B\bigcap C' \right)\bigcup \left( A'\bigcap B'\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C' \right)\bigcup \left( A\bigcap B'\bigcap C \right)\bigcup \left( A'\bigcap B\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C \right)$
The above equation can be understood as follows:
The first three are for getting an odd number exactly once.
Then three are for getting an odd number exactly twice
The last one is for getting an odd number all the time.
Clearly, the union of those is equivalent to getting an odd number exactly once.
Hence, we have
$P\left( E \right)=P\left( \left( A\bigcap B'\bigcap C' \right)\bigcup \left( A'\bigcap B\bigcap C' \right)\bigcup \left( A'\bigcap B'\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C' \right)\bigcup \left( A\bigcap B'\bigcap C \right)\bigcup \left( A'\bigcap B\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C \right) \right)$
We know that if A, B and C are mutually exclusive events then $P\left( A\bigcup B\bigcup C \right)=P\left( A \right)+P\left( B \right)+P\left( C \right)$.
Hence, we have
$P\left( E \right)=P\left( \left( A\bigcap B'\bigcap C' \right) \right)+P\left( \left( A'\bigcap B\bigcap C' \right) \right)+P\left( \left( A'\bigcap B'\bigcap C \right) \right)+P\left( \left( A\bigcap B\bigcap C' \right) \right)+P\left( \left( A\bigcap B'\bigcap C \right) \right)+P\left( \left( A'\bigcap B\bigcap C \right) \right)+P\left( \left( A\bigcap B\bigcap C \right) \right)$
Now, we know that if A, B and C are independent events then $P\left( A\bigcap B\bigcap C \right)=P\left( A \right)P\left( B \right)P\left( C \right)$.
Hence, we have
$P\left( \left( A\bigcap B'\bigcap C' \right) \right)=P\left( A \right)P\left( B' \right)P\left( C' \right)=\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{8}$
Similarly, we have
$\begin{align}
& P\left( \left( A'\bigcap B\bigcap C' \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A'\bigcap B'\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B\bigcap C' \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B'\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A'\bigcap B\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B\bigcap C \right) \right)=\dfrac{1}{8} \\
\end{align}$
Hence, we have
$P\left( E \right)=\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}=\dfrac{7}{8}$
Hence the probability of getting an odd number at least once is equal to $\dfrac{7}{8}$.
Note: [1] Alternative Solution:
We have
E’: Getting an even number in all three tries
Hence, we have
$E'=A'\bigcap B'\bigcap C'$
Hence, we have
$P\left( E' \right)=P\left( A' \right)P\left( B' \right)P\left( C' \right)=\dfrac{1}{8}$
Hence we have
$1-P\left( E \right)=\dfrac{1}{8}\Rightarrow P\left( E \right)=1-\dfrac{1}{8}=\dfrac{7}{8}$
Hence the probability of getting an odd number at least once is equal to $\dfrac{7}{8}$.
[2] Alternative Solution:
The total number of elements in sample space $=6\times 6\times 6=216$
The number of ways of getting an event number in all three tries $=3\times 3\times 3=27$
Hence the number of elements in E is $=216-27=189$
Hence, we have $P\left( E \right)=\dfrac{189}{216}=\dfrac{7}{8}$
Complete step-by-step answer:
Let A: Getting an odd number on the first toss
B: Getting an odd number on the second toss
C: Getting an odd number on the third toss.
Here $P\left( A \right)=\dfrac{n\left( E \right)}{n\left( S \right)}=\dfrac{3}{6}=\dfrac{1}{2}$ and $P\left( A' \right)=1-\dfrac{1}{2}=\dfrac{1}{2}$
Hence, we have $P\left( A \right)=P\left( A' \right)=P\left( B \right)=P\left( B' \right)=P\left( C \right)=P\left( C' \right)=\dfrac{1}{2}$
Then E: The event of getting an odd number at least once is given by
$E=\left( A\bigcap B'\bigcap C' \right)\bigcup \left( A'\bigcap B\bigcap C' \right)\bigcup \left( A'\bigcap B'\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C' \right)\bigcup \left( A\bigcap B'\bigcap C \right)\bigcup \left( A'\bigcap B\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C \right)$
The above equation can be understood as follows:
The first three are for getting an odd number exactly once.
Then three are for getting an odd number exactly twice
The last one is for getting an odd number all the time.
Clearly, the union of those is equivalent to getting an odd number exactly once.
Hence, we have
$P\left( E \right)=P\left( \left( A\bigcap B'\bigcap C' \right)\bigcup \left( A'\bigcap B\bigcap C' \right)\bigcup \left( A'\bigcap B'\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C' \right)\bigcup \left( A\bigcap B'\bigcap C \right)\bigcup \left( A'\bigcap B\bigcap C \right)\bigcup \left( A\bigcap B\bigcap C \right) \right)$
We know that if A, B and C are mutually exclusive events then $P\left( A\bigcup B\bigcup C \right)=P\left( A \right)+P\left( B \right)+P\left( C \right)$.
Hence, we have
$P\left( E \right)=P\left( \left( A\bigcap B'\bigcap C' \right) \right)+P\left( \left( A'\bigcap B\bigcap C' \right) \right)+P\left( \left( A'\bigcap B'\bigcap C \right) \right)+P\left( \left( A\bigcap B\bigcap C' \right) \right)+P\left( \left( A\bigcap B'\bigcap C \right) \right)+P\left( \left( A'\bigcap B\bigcap C \right) \right)+P\left( \left( A\bigcap B\bigcap C \right) \right)$
Now, we know that if A, B and C are independent events then $P\left( A\bigcap B\bigcap C \right)=P\left( A \right)P\left( B \right)P\left( C \right)$.
Hence, we have
$P\left( \left( A\bigcap B'\bigcap C' \right) \right)=P\left( A \right)P\left( B' \right)P\left( C' \right)=\dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{8}$
Similarly, we have
$\begin{align}
& P\left( \left( A'\bigcap B\bigcap C' \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A'\bigcap B'\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B\bigcap C' \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B'\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A'\bigcap B\bigcap C \right) \right)=\dfrac{1}{8} \\
& P\left( \left( A\bigcap B\bigcap C \right) \right)=\dfrac{1}{8} \\
\end{align}$
Hence, we have
$P\left( E \right)=\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}=\dfrac{7}{8}$
Hence the probability of getting an odd number at least once is equal to $\dfrac{7}{8}$.
Note: [1] Alternative Solution:
We have
E’: Getting an even number in all three tries
Hence, we have
$E'=A'\bigcap B'\bigcap C'$
Hence, we have
$P\left( E' \right)=P\left( A' \right)P\left( B' \right)P\left( C' \right)=\dfrac{1}{8}$
Hence we have
$1-P\left( E \right)=\dfrac{1}{8}\Rightarrow P\left( E \right)=1-\dfrac{1}{8}=\dfrac{7}{8}$
Hence the probability of getting an odd number at least once is equal to $\dfrac{7}{8}$.
[2] Alternative Solution:
The total number of elements in sample space $=6\times 6\times 6=216$
The number of ways of getting an event number in all three tries $=3\times 3\times 3=27$
Hence the number of elements in E is $=216-27=189$
Hence, we have $P\left( E \right)=\dfrac{189}{216}=\dfrac{7}{8}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
