
A bicycle is resting on its stand in the east-west direction and the rear wheel is rotated at an angular speed of $50$ revolutions per minute. If the length of each spoke is $30.0cm$ and the horizontal component of the earth’s magnetic field is $4 \times {10^{ - 5}}T$, find the emf induced between the axis and the outer end of a spoke. Neglect centripetal force acting on the free electrons of the spoke.
Answer
232.8k+ views
Hint: When charged particles move with uniform acceleration inside a uniform magnetic field, an electric field is formed. That electric field then induces an emf. Any particle performing circular motion is always under uniform acceleration, because even though it’s angular velocity remains constant, its direction keeps changing.
Complete step by step answer:
Angular speed of the wheel $\left( \omega \right)$ is given as,
$
\omega = 50\dfrac{{rev}}{{\min }} \\
\Rightarrow \omega = 100\pi \dfrac{{rad}}{{\min }} \\
\Rightarrow \omega = \dfrac{{100\pi }}{{60}}\dfrac{{rad}}{{\sec }} \\
\Rightarrow \omega = \dfrac{{5\pi }}{3}\dfrac{{rad}}{{\sec }} $
The emf $\left( \varepsilon \right)$ induced by the moving charged particles can be calculated by,
$\Rightarrow \varepsilon = \dfrac{{\omega B{l^2}}}{2}$
Where, $B = $Horizontal component of earth’s magnetic field,
$l = $ Length of the spoke
$\Rightarrow \varepsilon = \dfrac{{5\pi \times 4 \times {{10}^{ - 5}} \times 0.3 \times 0.3}}{{3 \times 2}}$
$\Rightarrow \varepsilon = 9.42\mu V$
Hence the emf induced is $9.42\mu V$.
Note: Any charge at rest always emits uniform electric field. When a charge moves at a uniform velocity creates a magnetic field. When a charge moves with uniform acceleration it produces an electromagnetic field. In that electromagnetic field, electric fields and magnetic fields oscillate perpendicular to each other.
Complete step by step answer:
Angular speed of the wheel $\left( \omega \right)$ is given as,
$
\omega = 50\dfrac{{rev}}{{\min }} \\
\Rightarrow \omega = 100\pi \dfrac{{rad}}{{\min }} \\
\Rightarrow \omega = \dfrac{{100\pi }}{{60}}\dfrac{{rad}}{{\sec }} \\
\Rightarrow \omega = \dfrac{{5\pi }}{3}\dfrac{{rad}}{{\sec }} $
The emf $\left( \varepsilon \right)$ induced by the moving charged particles can be calculated by,
$\Rightarrow \varepsilon = \dfrac{{\omega B{l^2}}}{2}$
Where, $B = $Horizontal component of earth’s magnetic field,
$l = $ Length of the spoke
$\Rightarrow \varepsilon = \dfrac{{5\pi \times 4 \times {{10}^{ - 5}} \times 0.3 \times 0.3}}{{3 \times 2}}$
$\Rightarrow \varepsilon = 9.42\mu V$
Hence the emf induced is $9.42\mu V$.
Note: Any charge at rest always emits uniform electric field. When a charge moves at a uniform velocity creates a magnetic field. When a charge moves with uniform acceleration it produces an electromagnetic field. In that electromagnetic field, electric fields and magnetic fields oscillate perpendicular to each other.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

