Courses
Courses for Kids
Free study material
Free LIVE classes
More

# NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Ex 8.2) Exercise 8.2

## NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Ex 8.2) Exercise 8.2

Last updated date: 24th Jan 2023
Total views: 439.2k
Views today: 11.33k

Free PDF download of NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2 (Ex 8.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all NCERT solutions in your emails. Also, Download Class 10 Science Solutions for free from Vedantu.

### Important Points to Remember before Solving Exercise 8.2

We can use trigonometry to calculate distances and heights. It depicts the relationship between a triangle's sides and angles. It is commonly used for a right-angle triangle.

### 1. Trigonometric Ratios

In the right angled triangle above, ∠B = 90°. If we consider ∠A as the acute angle then,

• AB will be the base, also known as the side adjacent to the acute angle.

• BC will be the perpendicular, also called the side opposite to the acute angle.

• AC will be the hypotenuse, which is the side opposite the right angle.

### 2. Standard values of Trigonometric ratios

 ∠A 0 Degrees 30 Degrees 45 Degrees 60 Degrees 90 Degrees sin A 0 $\frac{1}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ 1 cos A 1 $\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$ 0 tan A 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ not defined cosec A not defined 2 $\sqrt{2}$ $\frac{2}{\sqrt{3}}$ 1 sec A 1 $\frac{2}{\sqrt{3}}$ $\sqrt{2}$ 2 not defined cot A not defined $\sqrt{3}$ 1 $\frac{1}{\sqrt{3}}$ 0
Watch videos on
NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Ex 8.2) Exercise 8.2 TRIGONOMETRY Class 10 in One Shot (Complete Chapter) | CBSE 10 Math Chapter 8 [Term 1 Exam] Vedantu
Vedantu 9&10
Subscribe Share
7.1K likes
145.2K Views
1 year ago TRIGONOMETRY L-2 (Trigonometric Identities) CBSE Class 10 Maths Chapter 8 | Term 1 Exam | Vedantu
Vedantu 9&10
7.5K likes
125.4K Views
1 year ago
Play Quiz TRIGONOMETRY L-1 [Introduction and Trigonometric Ratios of Some Specific Angles] CBSE 10 Math Chap 8
Vedantu 9&10
12.3K likes
228.2K Views
1 year ago
Play Quiz Trigonometry in One Shot | CBSE Class 10 Maths Chapter 8 | NCERT Solutions | Vedantu Class 9 and 10
Vedantu 9&10
7.8K likes
180.4K Views
2 years ago
See More Do you need help with your Homework? Are you preparing for Exams?
Study without Internet (Offline)

## Access NCERT Solutions for Class -10 Maths Chapter 8 – Introduction to Trigonometry

Exercise 8.2

1. Evaluate the following:

(i)  $\sin 60{}^\circ \cos 30{}^\circ +\sin 30{}^\circ \cos 60{}^\circ$

Ans: With the help of trigonometric ratio tables we can find the values of standard trigonometric angles. The trigonometric ratio table is as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

We have to evaluate $\sin 60{}^\circ \cos 30{}^\circ +\sin 30{}^\circ \cos 60{}^\circ$.

Substitute the values from the above table, we get

$\Rightarrow \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \dfrac{1}{2}$

$\Rightarrow \dfrac{3}{4}+\dfrac{1}{4}$

$\Rightarrow \dfrac{4}{4}$

$\therefore \sin 60{}^\circ \cos 30{}^\circ +\sin 30{}^\circ \cos 60{}^\circ =1$.

(ii)  $2{{\tan }^{2}}45{}^\circ +{{\cos }^{2}}30{}^\circ -{{\sin }^{2}}60{}^\circ$

Ans: With the help of trigonometric ratio tables we can find the values of standard trigonometric angles. The trigonometric ratio table is as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

We have to evaluate $2{{\tan }^{2}}45{}^\circ +{{\cos }^{2}}30{}^\circ -{{\sin }^{2}}60{}^\circ$.

Substitute the values from the above table, we get

$\Rightarrow 2{{\left( 1 \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}-{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}$

$\Rightarrow 2+\dfrac{3}{4}-\dfrac{3}{4}$

$\Rightarrow 2$

$\therefore 2{{\tan }^{2}}45{}^\circ +{{\cos }^{2}}30{}^\circ -{{\sin }^{2}}60{}^\circ =2$.

(iii)  $\dfrac{\cos 45{}^\circ }{\sec 30{}^\circ +\operatorname{cosec}30{}^\circ }$

Ans: With the help of trigonometric ratio tables we can find the values of standard trigonometric angles. The trigonometric ratio table is as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

We have to evaluate $\dfrac{\cos 45{}^\circ }{\sec 30{}^\circ +\operatorname{cosec}30{}^\circ }$.

Substitute the values from the above table, we get

$\Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2}{\sqrt{3}}+2}$

$\Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{2+2\sqrt{3}}{\sqrt{3}}}$

$\Rightarrow \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2+2\sqrt{3}}$

Multiplying and dividing by $\sqrt{3}-1$, we get

$\Rightarrow \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2+2\sqrt{3}}\times \dfrac{\sqrt{3}-1}{\sqrt{3}-1}$

$\Rightarrow \dfrac{\sqrt{3}\left( \sqrt{3}-1 \right)}{\sqrt{2}\left( 2+2\sqrt{3} \right)\left( \sqrt{3}-1 \right)}$

$\Rightarrow \dfrac{\sqrt{3}\left( \sqrt{3}-1 \right)}{2\sqrt{2}\left( \sqrt{3}+1 \right)\left( \sqrt{3}-1 \right)}$

$\Rightarrow \dfrac{3-\sqrt{3}}{2\sqrt{2}\left( {{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}} \right)}$

$\Rightarrow \dfrac{3-\sqrt{3}}{2\sqrt{2}\left( 3-1 \right)}$

$\Rightarrow \dfrac{3-\sqrt{3}}{4\sqrt{2}}$

$\therefore \dfrac{\cos 45{}^\circ }{\sec 30{}^\circ +\operatorname{cosec}30{}^\circ }=\dfrac{3-\sqrt{3}}{4\sqrt{2}}$

(iv)  $\dfrac{\sin 30{}^\circ +\tan 45{}^\circ -\operatorname{cosec}60{}^\circ }{\sec 30{}^\circ +\cos 60{}^\circ -\cot 45{}^\circ }$

Ans: With the help of trigonometric ratio tables we can find the values of standard trigonometric angles. The trigonometric ratio table is as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

We have to evaluate $\dfrac{\sin 30{}^\circ +\tan 45{}^\circ -\operatorname{cosec}60{}^\circ }{\sec 30{}^\circ +\cos 60{}^\circ -\cot 45{}^\circ }$.

Substitute the values from the above table, we get

$\Rightarrow \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1}$

$\Rightarrow \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{3}{2}}$

$\Rightarrow \dfrac{\dfrac{3\sqrt{3}-4}{2\sqrt{3}}}{\dfrac{3\sqrt{3}+4}{2\sqrt{3}}}$

$\Rightarrow \dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}$

Multiplying and dividing by $3\sqrt{3}-4$, we get

$\Rightarrow \dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}\times \dfrac{3\sqrt{3}-4}{3\sqrt{3}-4}$

Now, applying the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$, we get

$\Rightarrow \dfrac{{{\left( 3\sqrt{3}-4 \right)}^{2}}}{{{\left( 3\sqrt{3} \right)}^{2}}-{{4}^{2}}}$

$\Rightarrow \dfrac{{{\left( 3\sqrt{3}-4 \right)}^{2}}}{{{\left( 3\sqrt{3} \right)}^{2}}-{{4}^{2}}}$

$\Rightarrow \dfrac{27+16-24\sqrt{3}}{27-16}$

$\Rightarrow \dfrac{43-24\sqrt{3}}{11}$

$\therefore \dfrac{\sin 30{}^\circ +\tan 45{}^\circ -\operatorname{cosec}60{}^\circ }{\sec 30{}^\circ +\cos 60{}^\circ -\cot 45{}^\circ }=\dfrac{43-24\sqrt{3}}{11}$

(v)  $\dfrac{5{{\cos }^{2}}60{}^\circ +4{{\sec }^{2}}30{}^\circ -{{\tan }^{2}}45{}^\circ }{{{\sec }^{2}}30{}^\circ +{{\cos }^{2}}30{}^\circ }$

Ans: With the help of trigonometric ratio tables we can find the values of standard trigonometric angles. The trigonometric ratio table is as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

We have to evaluate $\dfrac{5{{\cos }^{2}}60{}^\circ +4{{\sec }^{2}}30{}^\circ -{{\tan }^{2}}45{}^\circ }{{{\sec }^{2}}30{}^\circ +{{\cos }^{2}}30{}^\circ }$.

Substitute the values from the above table, we get

$\Rightarrow \dfrac{5{{\left( \dfrac{1}{2} \right)}^{2}}+4{{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-{{1}^{2}}}{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}$

$\Rightarrow \dfrac{5\left( \dfrac{1}{4} \right)+4\left( \dfrac{4}{3} \right)-1}{\left( \dfrac{1}{4} \right)+\left( \dfrac{3}{4} \right)}$

$\Rightarrow \dfrac{\dfrac{15+64-12}{12}}{\dfrac{1+3}{4}}$

$\Rightarrow \dfrac{\dfrac{15+64-12}{12}}{\dfrac{1+3}{4}}$

$\Rightarrow \dfrac{\dfrac{15+64-12}{12}}{\dfrac{4}{4}}$

$\Rightarrow \dfrac{\dfrac{67}{12}}{1}$

$\therefore \dfrac{5{{\cos }^{2}}60{}^\circ +4{{\sec }^{2}}30{}^\circ -{{\tan }^{2}}45{}^\circ }{{{\sec }^{2}}30{}^\circ +{{\cos }^{2}}30{}^\circ }=\dfrac{67}{12}$.

2. Choose the correct option and justify your choice.

(i)  $\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=$ ………

1. $\sin 60{}^\circ$

2. $\cos 60{}^\circ$

3. $\tan 60{}^\circ$

4. $\sin 30{}^\circ$

Ans: The given expression is $\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }$.

We know that from the trigonometric ratio table we have $\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}$.

Substitute the value in the given expression we get

$\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1+{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\dfrac{\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{3}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{4}{3}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\dfrac{\sqrt{3}}{2}$

From the trigonometric table we know that

$\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$

$\cos 60{}^\circ =\dfrac{1}{2}$

$\tan 60{}^\circ =\sqrt{3}$

$\sin 30{}^\circ =\dfrac{1}{2}$

Hence, $\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\sin 60{}^\circ$.

Therefore, option (A) is the correct answer.

(ii)  $\dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }=$ ………

1. $\tan 90{}^\circ$

2. $1$

3. $\sin 45{}^\circ$

4. $0$

Ans: The given expression is $\dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }$.

We know that from the trigonometric ratio table we have $\tan 45{}^\circ =1$.

Substitute the value in the given expression we get

$\dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }=\dfrac{1-{{1}^{2}}}{1+{{1}^{2}}}$

$\Rightarrow \dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }=\dfrac{1-1}{1+1}$

$\Rightarrow \dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }=\dfrac{0}{2}$

$\therefore \dfrac{1-{{\tan }^{2}}45{}^\circ }{1+{{\tan }^{2}}45{}^\circ }=0$

Therefore, option (D) is the correct answer.

(iii)  $\sin 2A=2\sin A$ is true when $A=$ ……..

1. $0{}^\circ$

2. $30{}^\circ$

3. $45{}^\circ$

4. $60{}^\circ$

Ans: The given expression is $\sin 2A=2\sin A$.

We know that from the trigonometric ratio table we have

$\sin 0{}^\circ =0$

$\sin 30{}^\circ =\dfrac{1}{2}$

$\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}$

$\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$

$\sin 90{}^\circ =1$

The given statement is true when $A=0{}^\circ$.

Substitute the value in the given expression we get

$\Rightarrow \sin 2A=2\sin A$

$\Rightarrow \sin 2\times 0{}^\circ =2\sin 0{}^\circ$

$0=0$

Therefore, option (A) is the correct answer.

(iv)  $\dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=$………

1. $\sin 60{}^\circ$

2. $\cos 60{}^\circ$

3. $\tan 60{}^\circ$

4. $\sin 30{}^\circ$

Ans: The given expression is $\dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }$.

We know that from the trigonometric ratio table we have $\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}$.

Substitute the value in the given expression we get

$\dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1-{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=\dfrac{\dfrac{2}{\sqrt{3}}}{1-\dfrac{1}{3}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{2}{3}}$

$\Rightarrow \dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=\sqrt{3}$

From the trigonometric table we know that

$\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$

$\cos 60{}^\circ =\dfrac{1}{2}$

$\tan 60{}^\circ =\sqrt{3}$

$\sin 30{}^\circ =\dfrac{1}{2}$

Hence, $\dfrac{2\tan 30{}^\circ }{1-{{\tan }^{2}}30{}^\circ }=\tan 60{}^\circ$.

Therefore, option (C) is the correct answer.

3. If $\tan \left( A+B \right)=\sqrt{3}$ and $\tan \left( A-B \right)=\dfrac{1}{\sqrt{3}}$, $0{}^\circ <A+B\le 90{}^\circ$. Find $A$ and $B$.

Ans: Given that $\tan \left( A+B \right)=\sqrt{3}$ and $\tan \left( A-B \right)=\dfrac{1}{\sqrt{3}}$.

From the trigonometric ratio table we know that $\tan 60{}^\circ =\sqrt{3}$ and $\tan 30{}^\circ =\dfrac{1}{\sqrt{3}}$.

Then we get

$\tan \left( A+B \right)=\sqrt{3}$

$\Rightarrow \tan \left( A+B \right)=\tan 60{}^\circ$

$\Rightarrow A+B=60{}^\circ$ ……….(1)

Also, $\tan \left( A-B \right)=\dfrac{1}{\sqrt{3}}$

$\Rightarrow \tan \left( A-B \right)=\tan 30{}^\circ$

$\Rightarrow A-B=30{}^\circ$ ……….(2)

Adding eq. (1) and (2), we get

$2A=90{}^\circ$

$\therefore A=45{}^\circ$

Substitute the obtained value in eq. (1), we get

$45{}^\circ +B=60{}^\circ$

$\Rightarrow B=60{}^\circ -45{}^\circ$

$\therefore B=15{}^\circ$

Therefore, the values of $A$ and $B$ is $45{}^\circ$ and $15{}^\circ$ respectively.

4. State whether the following are true or false. Justify your answer.

(i)  $\sin \left( A+B \right)=\sin A+\sin B$.

Ans: Let us assume $A=30{}^\circ$ and $B=60{}^\circ$.

Now, let us consider LHS of the given expression, we get

$\sin \left( A+B \right)$

Substitute the assumed values in the LHS, we get

$\sin \left( A+B \right)=\sin \left( 30{}^\circ +60{}^\circ \right)$

$\Rightarrow \sin \left( A+B \right)=\sin \left( 90{}^\circ \right)$

From the trigonometric ratio table we know that $\sin 90{}^\circ =1$, we get

$\Rightarrow \sin \left( A+B \right)=1$

Now, let us consider the RHS of the given expression and substitute the values, we get

$\sin A+\sin B=\sin 30{}^\circ +\sin 60{}^\circ$

From the trigonometric ratio table we know that $\sin 30{}^\circ =\dfrac{1}{2}$ and $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$, we get

$\Rightarrow \sin A+\sin B=\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}$

$\Rightarrow \sin A+\sin B=\dfrac{1+\sqrt{3}}{2}$

Thus, $LHS\ne RHS$.

Therefore, the given statement is false.

(ii)  The value of $\sin \theta$ increases as $\theta$ increases.

Ans: The value of sine from the trigonometric ratio table is as follows:

$\sin 0{}^\circ =0$

$\sin 30{}^\circ =\dfrac{1}{2}=0.5$

$\sin 45{}^\circ =\dfrac{1}{\sqrt{2}}=0.707$

$\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}=0.866$

$\sin 90{}^\circ =1$

Therefore, we can conclude that the value of $\sin \theta$ increases as $\theta$ increases.

Therefore, the given statement is true.

(iii)  The value of $\cos \theta$ increases as $\theta$ increases.

Ans: The value of cosine from the trigonometric ratio table is as follows:

$\cos 0{}^\circ =1$

$\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}=0.866$

$\cos 45{}^\circ =\dfrac{1}{\sqrt{2}}=0.707$

$\cos 60{}^\circ =\dfrac{1}{2}=0.5$

$\cos 90{}^\circ =0$

Therefore, we can conclude that the value of $\cos \theta$ decreases as $\theta$ increases.

Therefore, the given statement is false.

(iv)  $\sin \theta =\cos \theta$ for all values of $\theta$.

Ans: The trigonometric ratio table is given as follows:

 Exact Values of Trigonometric Functions Angle $\theta$ $\sin \theta$ $\cos \theta$ $\tan \theta$ Degrees Radians $0{}^\circ$ $0$ $0$ $1$ $0$ $30{}^\circ$ $\dfrac{\pi }{6}$ $\dfrac{1}{2}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{\sqrt{3}}$ $45{}^\circ$ $\dfrac{\pi }{4}$ $\dfrac{1}{\sqrt{2}}$ $\dfrac{1}{\sqrt{2}}$ $1$ $60{}^\circ$ $\dfrac{\pi }{3}$ $\dfrac{\sqrt{3}}{2}$ $\dfrac{1}{2}$ $\sqrt{3}$ $90{}^\circ$ $\dfrac{\pi }{2}$ $1$ $0$ Not defined

From the above table we can conclude that $\sin \theta =\cos \theta$ is true only for $\theta =45{}^\circ$.

$\sin \theta =\cos \theta$ is not true for all values of $\theta$.

Therefore, the given statement is false.

(v)  $\cot A$ is not defined for $A=0{}^\circ$.

Ans: We know that $\cot A=\dfrac{\cos A}{\sin A}$ .

If $A=0{}^\circ$, then $\cot 0{}^\circ =\dfrac{\cos 0{}^\circ }{\sin 0{}^\circ }$

From trigonometric ratio table we get

$\sin 0{}^\circ =0$ and $\cos 0{}^\circ =1$

We get

$\cot 0{}^\circ =\dfrac{1}{0}$, which is undefined.

Therefore, the given statement is true.

## NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Exercise 8.2

Opting for the NCERT solutions for Ex 8.2 Class 10 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 8.2 Class 10 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 10 students who are thorough with all the concepts from the Subject Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 10 Maths Chapter 8 Exercise 8.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 10 Maths Chapter 8 Exercise 8.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.

Do not delay any more. Download the NCERT solutions for Class 10 Maths Chapter 8 Exercise 8.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

### NCERT Solutions for Class 10 Maths Chapter 8 Exercises

 Chapter 8 Introduction to Trigonometry All Exercises in PDF Format Exercise 8.1 11 Questions and Solutions Exercise 8.3 7 Questions and Solutions Exercise 8.4 5 Questions and Solutions

## FAQs on NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry (Ex 8.2) Exercise 8.2

1. What are the topics/ sub-topics covered in this Class 10 Maths Chapter 8 Exercise 8.2?

NCERT Solutions for Class 10 Maths Chapter 8 deals with Introduction to Trigonometry. The topics/ sub-topics covered in this Class 10 Maths Chapter 8 Exercise 8 are:

• Introduction to Trigonometry

• Introduction

• Trigonometric Ratios

• Trigonometric Ratios of Some Specific Angles

• Trigonometric Ratios of Complementary Angles

• Trigonometric Identities

• Summary

2. How many questions are there Class 10 Maths Chapter 8 Exercise 8.2 of NCERT textbook?

Class 10 Maths Chapter 8 Exercise 8.2 of NCERT textbook contains four questions in total. Out of which, one was short answer type, two long answer type, and one multiple choice question. Answer to these questions have also been provided by Vedantu.

3. What are the benefits of using NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2?

Vedantu NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2 are extremely helpful for all the students as these are designed by the Maths experts that cover all the questions from the textbook. These NCERT Solutions are created as per the latest CBSE syllabus and guidelines, in accordance with the exam pattern prescribed by the CBSE.

These NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2 provide a strong foundation for every concept. Students can clarify their doubts and understand the fundamentals of the chapter through these solutions. With the help of NCERT Solutions for Class 10, it becomes easier to solve the difficult problems in each exercise.

Yes, you can download NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2 for free of cost from Vedantu official website i.e. vedantu.com. You can download these solutions from Vedantu mobile app as well. These solutions are developed by Vedantu’s subject matter experts who hold years of experience in the respective fields. Hence these solutions are accurate and can be downloaded without any hassle.

5. Can students solve all the questions from exercise 8.2 of Class 10 Maths easily?

Yes, students can easily solve all the questions from exercise 8.2 of Class 10 Maths from Vedantu. Here, you will get all the important questions along with their answers. The answers are properly explained so that the students do not face any difficulty. The students can also download the PDF of the exercise 8.2 solution or can even have access to them online on the app portal. It is interesting to note that the solutions are available free of cost.

6. How much time is needed to complete Exercise 8.2 of Class 10?

Well, it does not take much time to complete Exercise 8.2 of Class 10. What is needed the most is ‘practice’. If you have perfect practice and speed, you can easily solve it in 1-2 days. Again, it wholly depends on the student’s capability. If you devote at least 2 hours per day, you can solve it faster. A good solving technique is equally important for the completion of the exercise.

7. Where can I get solutions for Chapter Trigonometry?

The solutions for Chapter Trignometry are available on Vedantu. This platform has been helping students for a long time. It is one of the trusted study guides. The questions and answers are prepared by the experts keeping the CBSE guidelines in mind. Also, the solutions are available free of cost. Trigonometry is one of the important chapters of Class 8. Therefore, proper efforts are vital.

8. How to score maximum in Exercise 8.2 of Class 10 Chapter 8 Maths?

To get maximum marks in Exercise 8.2 of Class 10 Chapter 8 Maths, revise at regular intervals. It is a time-consuming exercise, so give enough hours for understanding. Don’t just do it in a hurry, as there are chances that you might miss the important steps. The key to scoring good marks is practising, and if this is proper then no one can stop you from getting maximum marks.

9. Do examples of Exercise 8.2 of Class 10 Chapter 8 Maths also come in board exams?

Yes. Examples of Exercise 8.2 of Class 10 Chapter 8 Maths can also come in board exams. It has happened many times that the question comes from the examples, and only the numbers are replaced. Apart from the digits, the entire question is the same. So, you should be familiar with the examples too. Examples do help in solving the exercise. SHARE TWEET SHARE SUBSCRIBE