
Write Coulomb’s law in vector form. Also explains the terms.
Answer
216k+ views
Hint: In this, we first acquire the relation between the force, the charges, and the distance between the charges. Then further, we will give the vector form of the coulomb’s law. Understanding the basic concepts of coulomb’s law will help us find its limitations.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Complete step-by-step solution:
The Coulomb's law of electrostatic force states that the electrostatic force of attraction and repulsion are directly proportional to the product of the charges and inversely proportional to the square of the distance between charges.
$ \Rightarrow F\alpha {q_1} \times {q_2}$
$ \Rightarrow F\alpha \dfrac{1}{{{r^2}}}$
Where ${q_1}$ , ${q_2}$ are the charges, and $r$ is the distance between the charges.
Thus, the electrostatic force is given by,
$ \Rightarrow F\alpha \dfrac{{{q_1}{q_2}}}{{{r^2}}}$
$ \Rightarrow F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Where k is constant of proportionality
The vector form of the coulomb’s law is known as:
$ \Rightarrow {\vec F_{12}} = k\dfrac{{{q_1}{q_2}}}{{{r_{12}}^2}}{\hat r_{12}}$
Here, ${r_{12}}$ is the displacement from charge $1$ to charge $2$ .
Force on the charge $2$ is given as:
$ \Rightarrow {\vec F_{21}} = k\dfrac{{{q_1}{q_2}}}{{{r_{21}}^2}}{\hat r_{21}}$
The magnitude of the force between charge $1$ and charge $2$ is equal.
$ \Rightarrow {\vec F_{12}} = {\vec F_{21}}$
Additional information:
1. There are some restrictions of this law as following:
2. This law is valid only for the point charges at rest.
3. Coulomb’s law can only be applied in the cases where the inverse square law is followed.
4. It is also tough to apply coulomb’s law where charges are in arbitrary shape because in such cases we cannot decide the distance between the two charges.
This law cannot be used directly to evaluate the charges of the big planets.
Note: The things to be at your fingertips for further information on solving these types of problems are: A tip to understand this type of concept is, to remember the scalar and vector quantities. When both the quantities, that is, the magnitude and the direction are involved, then those quantities will be vector quantities, but not all.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Complete step-by-step solution:
The Coulomb's law of electrostatic force states that the electrostatic force of attraction and repulsion are directly proportional to the product of the charges and inversely proportional to the square of the distance between charges.
$ \Rightarrow F\alpha {q_1} \times {q_2}$
$ \Rightarrow F\alpha \dfrac{1}{{{r^2}}}$
Where ${q_1}$ , ${q_2}$ are the charges, and $r$ is the distance between the charges.
Thus, the electrostatic force is given by,
$ \Rightarrow F\alpha \dfrac{{{q_1}{q_2}}}{{{r^2}}}$
$ \Rightarrow F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Where k is constant of proportionality
The vector form of the coulomb’s law is known as:
$ \Rightarrow {\vec F_{12}} = k\dfrac{{{q_1}{q_2}}}{{{r_{12}}^2}}{\hat r_{12}}$
Here, ${r_{12}}$ is the displacement from charge $1$ to charge $2$ .
Force on the charge $2$ is given as:
$ \Rightarrow {\vec F_{21}} = k\dfrac{{{q_1}{q_2}}}{{{r_{21}}^2}}{\hat r_{21}}$
The magnitude of the force between charge $1$ and charge $2$ is equal.
$ \Rightarrow {\vec F_{12}} = {\vec F_{21}}$
Additional information:
1. There are some restrictions of this law as following:
2. This law is valid only for the point charges at rest.
3. Coulomb’s law can only be applied in the cases where the inverse square law is followed.
4. It is also tough to apply coulomb’s law where charges are in arbitrary shape because in such cases we cannot decide the distance between the two charges.
This law cannot be used directly to evaluate the charges of the big planets.
Note: The things to be at your fingertips for further information on solving these types of problems are: A tip to understand this type of concept is, to remember the scalar and vector quantities. When both the quantities, that is, the magnitude and the direction are involved, then those quantities will be vector quantities, but not all.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

