
Write Coulomb’s law in vector form. Also explains the terms.
Answer
153.6k+ views
Hint: In this, we first acquire the relation between the force, the charges, and the distance between the charges. Then further, we will give the vector form of the coulomb’s law. Understanding the basic concepts of coulomb’s law will help us find its limitations.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Complete step-by-step solution:
The Coulomb's law of electrostatic force states that the electrostatic force of attraction and repulsion are directly proportional to the product of the charges and inversely proportional to the square of the distance between charges.
$ \Rightarrow F\alpha {q_1} \times {q_2}$
$ \Rightarrow F\alpha \dfrac{1}{{{r^2}}}$
Where ${q_1}$ , ${q_2}$ are the charges, and $r$ is the distance between the charges.
Thus, the electrostatic force is given by,
$ \Rightarrow F\alpha \dfrac{{{q_1}{q_2}}}{{{r^2}}}$
$ \Rightarrow F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Where k is constant of proportionality
The vector form of the coulomb’s law is known as:
$ \Rightarrow {\vec F_{12}} = k\dfrac{{{q_1}{q_2}}}{{{r_{12}}^2}}{\hat r_{12}}$
Here, ${r_{12}}$ is the displacement from charge $1$ to charge $2$ .
Force on the charge $2$ is given as:
$ \Rightarrow {\vec F_{21}} = k\dfrac{{{q_1}{q_2}}}{{{r_{21}}^2}}{\hat r_{21}}$
The magnitude of the force between charge $1$ and charge $2$ is equal.
$ \Rightarrow {\vec F_{12}} = {\vec F_{21}}$
Additional information:
1. There are some restrictions of this law as following:
2. This law is valid only for the point charges at rest.
3. Coulomb’s law can only be applied in the cases where the inverse square law is followed.
4. It is also tough to apply coulomb’s law where charges are in arbitrary shape because in such cases we cannot decide the distance between the two charges.
This law cannot be used directly to evaluate the charges of the big planets.
Note: The things to be at your fingertips for further information on solving these types of problems are: A tip to understand this type of concept is, to remember the scalar and vector quantities. When both the quantities, that is, the magnitude and the direction are involved, then those quantities will be vector quantities, but not all.
Formula used:
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Complete step-by-step solution:
The Coulomb's law of electrostatic force states that the electrostatic force of attraction and repulsion are directly proportional to the product of the charges and inversely proportional to the square of the distance between charges.
$ \Rightarrow F\alpha {q_1} \times {q_2}$
$ \Rightarrow F\alpha \dfrac{1}{{{r^2}}}$
Where ${q_1}$ , ${q_2}$ are the charges, and $r$ is the distance between the charges.
Thus, the electrostatic force is given by,
$ \Rightarrow F\alpha \dfrac{{{q_1}{q_2}}}{{{r^2}}}$
$ \Rightarrow F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Where k is constant of proportionality
The vector form of the coulomb’s law is known as:
$ \Rightarrow {\vec F_{12}} = k\dfrac{{{q_1}{q_2}}}{{{r_{12}}^2}}{\hat r_{12}}$
Here, ${r_{12}}$ is the displacement from charge $1$ to charge $2$ .
Force on the charge $2$ is given as:
$ \Rightarrow {\vec F_{21}} = k\dfrac{{{q_1}{q_2}}}{{{r_{21}}^2}}{\hat r_{21}}$
The magnitude of the force between charge $1$ and charge $2$ is equal.
$ \Rightarrow {\vec F_{12}} = {\vec F_{21}}$
Additional information:
1. There are some restrictions of this law as following:
2. This law is valid only for the point charges at rest.
3. Coulomb’s law can only be applied in the cases where the inverse square law is followed.
4. It is also tough to apply coulomb’s law where charges are in arbitrary shape because in such cases we cannot decide the distance between the two charges.
This law cannot be used directly to evaluate the charges of the big planets.
Note: The things to be at your fingertips for further information on solving these types of problems are: A tip to understand this type of concept is, to remember the scalar and vector quantities. When both the quantities, that is, the magnitude and the direction are involved, then those quantities will be vector quantities, but not all.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE
