
Which transition in \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\] would have the same wavelength as the \[2 \to 4\] transition in \[{\rm{H}}{{\rm{e}}^ + }\] ion?
A. 3 to 6
B. 4 to 3
C. 5 to 6
D. 5 to 4
Answer
162.3k+ views
Hint: The emission of spectral lines takes place by the hydrogen atoms in the visible part of the spectrum. The wavelengths of the spectral lines are given by the formula of \[\dfrac{1}{\lambda } = {R_H}{Z^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]. Here, \[\lambda \] stands for wavelength, \[{R_H}\] is Rydberg's constant, Z is for atomic number, \[{n_i}\]stands for initial shell and the \[{n_f}\] stands for final shell.
Complete Step by Step Answer:
Here, we need to identify the transition of \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]in which wavelength is equal to the wavelength in the transition of \[2 \to 4\]in a helium ion.
Let's first calculate the Helium ion's wavelength using the above equation.
We know that the Z for He atom is 2, and given that transition of helium ion is given as 2 to 4.
So, we put the above values in the wavelength formula.
\[\dfrac{1}{\lambda } = {R_H}{2^2}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right]\]
\[\dfrac{1}{\lambda } = {R_H}4\left[ {\dfrac{{4 - 1}}{{16}}} \right]\]
\[\dfrac{1}{\lambda } = {R_H}\dfrac{{4 \times 3}}{{16}}\]
\[\dfrac{1}{\lambda } = {R_H}\dfrac{3}{4}\] …… (1)
Given that,
\[{\lambda _{{\rm{L}}{{\rm{i}}^{2 + }}}} = {\lambda _{{\rm{H}}{{\rm{e}}^ + }}}(2 \to 4)\]
Therefore, we can put the above value of wavelength in the equation of wavelength for the \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]ion. And we know, Z for lithium is 3.
So, the wavelength equation for \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]is,
\[\dfrac{1}{\lambda } = {R_H}{3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[{R_H}\dfrac{3}{4} = {R_H}{3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{3}{4} = {3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{3}{{4 \times 9}} = \left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}} = \dfrac{1}{{12}}\]
On solving the above quadratic equation, we get the values of \[{n_i} = 3\]and \[{n_f} = 6\] .
Therefore, option A is right.
Note: The phenomenon of emission of spectral lines by hydrogen atoms kept in a discharge lamp is due to the absorption of energy and the excitation of the electrons to a higher state of energy. When the electron comes back to its original state, the emission of energy in the form of radiation happens. This series was discovered by Balmer and the series got named after him.
Complete Step by Step Answer:
Here, we need to identify the transition of \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]in which wavelength is equal to the wavelength in the transition of \[2 \to 4\]in a helium ion.
Let's first calculate the Helium ion's wavelength using the above equation.
We know that the Z for He atom is 2, and given that transition of helium ion is given as 2 to 4.
So, we put the above values in the wavelength formula.
\[\dfrac{1}{\lambda } = {R_H}{2^2}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right]\]
\[\dfrac{1}{\lambda } = {R_H}4\left[ {\dfrac{{4 - 1}}{{16}}} \right]\]
\[\dfrac{1}{\lambda } = {R_H}\dfrac{{4 \times 3}}{{16}}\]
\[\dfrac{1}{\lambda } = {R_H}\dfrac{3}{4}\] …… (1)
Given that,
\[{\lambda _{{\rm{L}}{{\rm{i}}^{2 + }}}} = {\lambda _{{\rm{H}}{{\rm{e}}^ + }}}(2 \to 4)\]
Therefore, we can put the above value of wavelength in the equation of wavelength for the \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]ion. And we know, Z for lithium is 3.
So, the wavelength equation for \[{\rm{L}}{{\rm{i}}^{{\rm{2 + }}}}\]is,
\[\dfrac{1}{\lambda } = {R_H}{3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[{R_H}\dfrac{3}{4} = {R_H}{3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{3}{4} = {3^2}\left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{3}{{4 \times 9}} = \left[ {\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}}} \right]\]
\[\dfrac{1}{{{n_i}^2}} - \dfrac{1}{{{n_f}^2}} = \dfrac{1}{{12}}\]
On solving the above quadratic equation, we get the values of \[{n_i} = 3\]and \[{n_f} = 6\] .
Therefore, option A is right.
Note: The phenomenon of emission of spectral lines by hydrogen atoms kept in a discharge lamp is due to the absorption of energy and the excitation of the electrons to a higher state of energy. When the electron comes back to its original state, the emission of energy in the form of radiation happens. This series was discovered by Balmer and the series got named after him.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
