
Which one of the following options is correct?
A. \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in GP
B. \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\] are in GP
C. \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\] are in GP
D. None of these
Answer
162.6k+ views
Hint: In order to solve this problem, we will apply the formula \[{b^2} = ac\] in every option. And then put the values of trigonometric angles from the trigonometric table.
After doing this, we observe that which option correctly fit in the formula \[{b^2} = ac\].
Formula Used: 1) We will use \[{b^2} = ac\] formula, to check that the given numbers are in G.P. or not.
2) We will also use the values of trigonometric angles from the trigonometric table:
\[\sin {30^ \circ } = \dfrac{1}{2}\] , \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] , \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\cos {60^ \circ } = \dfrac{1}{2}\]
\[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] , \[\tan {45^ \circ } = 1\]and \[\tan {60^ \circ } = \sqrt 3 \]
Complete step by step solution: Remember that three numbers \[a\],\[b\], and \[c\]will be in G.P. if \[{b^2} = ac\].
First, we will check \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in G.P. or not.
\[{\left( {{{\sin }^2}{{45}^ \circ }} \right)^2} = {\sin ^2}{30^ \circ } \times {\sin ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{1}{2}} \right)^2} \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{1}{4} \times \dfrac{3}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{{\mathop{\rm Sin}\nolimits} ^2}{30^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{45^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{60^ \circ }\]are not in GP.
Now we will check \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\cos }^2}{{45}^ \circ }} \right)^2} = {\cos ^2}{30^ \circ } \times {\cos ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{3}{4} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are not in GP.
Further, we will check \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\tan }^2}{{45}^ \circ }} \right)^2} = {\tan ^2}{30^ \circ } \times {\tan ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{1^2}} \right]^2} = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \times {\left( {\sqrt 3 } \right)^2}\]
\[ \Rightarrow 1 = \dfrac{1}{3} \times 3\]
\[ \Rightarrow 1 = 1\]
As a result, we can say that\[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in GP.
Option ‘C’ is correct
Note: It is important to develop intuition so that we can possibly gain a sense of what might be the most likely answer to a problem.
After doing this, we observe that which option correctly fit in the formula \[{b^2} = ac\].
Formula Used: 1) We will use \[{b^2} = ac\] formula, to check that the given numbers are in G.P. or not.
2) We will also use the values of trigonometric angles from the trigonometric table:
\[\sin {30^ \circ } = \dfrac{1}{2}\] , \[\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] , \[\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]and \[\cos {60^ \circ } = \dfrac{1}{2}\]
\[\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] , \[\tan {45^ \circ } = 1\]and \[\tan {60^ \circ } = \sqrt 3 \]
Complete step by step solution: Remember that three numbers \[a\],\[b\], and \[c\]will be in G.P. if \[{b^2} = ac\].
First, we will check \[{\sin ^2}{30^ \circ },{\sin ^2}{45^ \circ },{\sin ^2}{60^ \circ }\] are in G.P. or not.
\[{\left( {{{\sin }^2}{{45}^ \circ }} \right)^2} = {\sin ^2}{30^ \circ } \times {\sin ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{1}{2}} \right)^2} \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{1}{4} \times \dfrac{3}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{{\mathop{\rm Sin}\nolimits} ^2}{30^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{45^ \circ },{{\mathop{\rm Sin}\nolimits} ^2}{60^ \circ }\]are not in GP.
Now we will check \[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\cos }^2}{{45}^ \circ }} \right)^2} = {\cos ^2}{30^ \circ } \times {\cos ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]^2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow {\left[ {\dfrac{1}{2}} \right]^2} = \dfrac{3}{4} \times \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{1}{4} \ne \dfrac{3}{{16}}\]
We can observe that\[{\cos ^2}{30^ \circ },{\cos ^2}{45^ \circ },{\cos ^2}{60^ \circ }\]are not in GP.
Further, we will check \[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in G.P. or not.
\[{\left( {{{\tan }^2}{{45}^ \circ }} \right)^2} = {\tan ^2}{30^ \circ } \times {\tan ^2}{60^ \circ }\]
Substitute the values of trigonometric angles
\[ \Rightarrow {\left[ {{1^2}} \right]^2} = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} \times {\left( {\sqrt 3 } \right)^2}\]
\[ \Rightarrow 1 = \dfrac{1}{3} \times 3\]
\[ \Rightarrow 1 = 1\]
As a result, we can say that\[{\tan ^2}{30^ \circ },{\tan ^2}{45^ \circ },{\tan ^2}{60^ \circ }\]are in GP.
Option ‘C’ is correct
Note: It is important to develop intuition so that we can possibly gain a sense of what might be the most likely answer to a problem.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
