Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Which one of the following Boolean expressions is a tautology?
$\begin{align}
  & \text{A}\text{. }\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right) \\
 & \text{B}\text{. }\left( p\wedge q \right)\vee \left( p\vee \sim q \right) \\
 & \text{C}\text{. }\left( p\vee q \right)\wedge \left( p\vee \sim q \right) \\
 & \text{D}\text{. }\left( p\vee q \right)\vee \left( p\vee \sim q \right) \\
\end{align}$

Answer
VerifiedVerified
151.5k+ views
Hint: To solve this question we have to draw a truth table for all the expressions given in the options. The output values of all the possible combinations of the expression must be true for expression to be a tautology. So, the expression from the options gives the output values true is a tautology.

Complete step-by-step answer:
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol $\wedge $ represents the AND operator, symbol $\vee $ represents the OR operator and symbol $\sim $ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$

$p$ $q$ $\sim p$$\sim q$$\left( p\vee q \right)$$\left( \sim p\vee \sim q \right)$$\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$
TrueTrueFalseFalseTrueFalseFalse
TrueFalseFalseTrueTrueTrueTrue
FalseTrueTrueFalseTrueTrueTrue
FalseFalseTrueTrueFalseTrueFalse



Now, we will draw a truth table for option B, i.e. $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$

$p$ $q$ $\sim p$$\sim q$$\left( p\wedge q \right)$$\left( p\vee \sim q \right)$$\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$
TrueTrueFalseFalseTrueTrueTrue
TrueFalseFalseTrueFalseTrueTrue
FalseTrueTrueFalseFalseFalseFalse
FalseFalseTrueTrueFalseTrueTrue



Now, we will draw a truth table for option C, i.e. $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$

$p$ $q$ $\sim p$$\sim q$$\left( p\vee q \right)$$\left( p\vee \sim q \right)$$\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$
TrueTrueFalseFalseTrueTrueTrue
TrueFalseFalseTrueTrueTrueTrue
FalseTrueTrueFalseTrueFalseFalse
FalseFalseTrueTrueFalseTrueFalse



Now, we will draw a truth table for option D, i.e. $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$

$p$ $q$ $\sim p$$\sim q$$\left( p\vee q \right)$$\left( p\vee \sim q \right)$$\left( p\vee q \right)\vee \left( p\vee \sim q \right)$
TrueTrueFalseFalseTrueTrueTrue
TrueFalseFalseTrueTrueTrueTrue
FalseTrueTrueFalseTrueFalseTrue
FalseFalseTrueTrueFalseTrueTrue



It is clear from the truth tables that only expression $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ gives all True values in output, so $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ is a tautology.
Hence, option D is the correct answer.


Note: Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.