
Which one of the following Boolean expressions is a tautology?
$\begin{align}
& \text{A}\text{. }\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right) \\
& \text{B}\text{. }\left( p\wedge q \right)\vee \left( p\vee \sim q \right) \\
& \text{C}\text{. }\left( p\vee q \right)\wedge \left( p\vee \sim q \right) \\
& \text{D}\text{. }\left( p\vee q \right)\vee \left( p\vee \sim q \right) \\
\end{align}$
Answer
151.5k+ views
Hint: To solve this question we have to draw a truth table for all the expressions given in the options. The output values of all the possible combinations of the expression must be true for expression to be a tautology. So, the expression from the options gives the output values true is a tautology.
Complete step-by-step answer:
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol $\wedge $ represents the AND operator, symbol $\vee $ represents the OR operator and symbol $\sim $ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$
Now, we will draw a truth table for option B, i.e. $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$
Now, we will draw a truth table for option C, i.e. $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$
Now, we will draw a truth table for option D, i.e. $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$
It is clear from the truth tables that only expression $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ gives all True values in output, so $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ is a tautology.
Hence, option D is the correct answer.
Note: Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.
Complete step-by-step answer:
Before solving this question let us first understand the meaning of the symbols used in the question.
Here, symbol $\wedge $ represents the AND operator, symbol $\vee $ represents the OR operator and symbol $\sim $ represents the NOT operator.
Now, let us draw the truth table for the option A i.e. $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$
$p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( \sim p\vee \sim q \right)$ | $\left( p\vee q \right)\wedge \left( \sim p\vee \sim q \right)$ |
True | True | False | False | True | False | False |
True | False | False | True | True | True | True |
False | True | True | False | True | True | True |
False | False | True | True | False | True | False |
Now, we will draw a truth table for option B, i.e. $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$
$p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\wedge q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\wedge q \right)\vee \left( p\vee \sim q \right)$ |
True | True | False | False | True | True | True |
True | False | False | True | False | True | True |
False | True | True | False | False | False | False |
False | False | True | True | False | True | True |
Now, we will draw a truth table for option C, i.e. $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$
$p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\vee q \right)\wedge \left( p\vee \sim q \right)$ |
True | True | False | False | True | True | True |
True | False | False | True | True | True | True |
False | True | True | False | True | False | False |
False | False | True | True | False | True | False |
Now, we will draw a truth table for option D, i.e. $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$
$p$ | $q$ | $\sim p$ | $\sim q$ | $\left( p\vee q \right)$ | $\left( p\vee \sim q \right)$ | $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ |
True | True | False | False | True | True | True |
True | False | False | True | True | True | True |
False | True | True | False | True | False | True |
False | False | True | True | False | True | True |
It is clear from the truth tables that only expression $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ gives all True values in output, so $\left( p\vee q \right)\vee \left( p\vee \sim q \right)$ is a tautology.
Hence, option D is the correct answer.
Note: Be careful while solving AND operator and OR operator because students get confused between the two symbols and make mistakes. It is necessary to check all options because sometimes a question has multiple correct options.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
