
Which of the following species are hypervalent?
1. \[Cl{O_4}^ - \] 2. \[B{F_3}\] 3. \[S{O_4}^{2 - }\] 4. \[C{O_3}^{2 - }\]
A. 1, 2, 3
B. 1, 3
C. 3, 4
D. 1, 2
Answer
220.8k+ views
Hint: A hypervalent molecule or a hypervalent species is a compound in which the given molecule contains one or more main group elements, and have more than eight electrons in their valence shell. This phenomenon is also commonly known as ‘expanded octet’.
Complete Step-by-Step answer:
To determine which of the given molecules are hypervalent, let us first understand the molecular structures of these compounds:
\[Cl{O_4}^ - \]

As we can observe in this structure, chlorine is forming 6 double bonds and 1 single bond. This brings the total number of electrons present in the valence shell of chlorine to be:
\[ = {\text{ }}6{\text{ }}\left( 4 \right){\text{ }} + {\text{ }}1{\text{ }}\left( 2 \right){\text{ }} = {\text{ }}12\] electrons
Hence, the given species is hypervalent
\[B{F_3}\]

As we can observe in this structure, boron is forming 3 single bonds. This brings the total number of atoms present in the valence shell of boron to be:
\[ = {\text{ }}3\left( 2 \right){\text{ }} = {\text{ }}6\] electrons
Hence, the given species is not hypervalent
\[Cl{O_4}^ - \]

As we can observe in this structure, sulphur is forming 2 double bonds and 2 single bonds. This brings the total number of electrons present in the valence shell of sulphur to be:
\[ = {\text{ }}2{\text{ }}\left( 4 \right){\text{ }} + {\text{ }}2{\text{ }}\left( 2 \right){\text{ }} = {\text{ }}10\] electrons
Hence, the given species is hypervalent
\[C{O_3}^{2 - }\]

As we can observe in this structure, carbon is forming 2 single bonds and 1 double bond. This brings the total number of atoms present in the valence shell of carbon to be:
\[ = {\text{ }}2\left( 2 \right){\text{ }} + {\text{ }}1\left( 4 \right){\text{ }} = {\text{ }}8\] electrons
Hence, the given species is not hypervalent
Hence, we can conclude that, the species that are hypervalent are \[Cl{O_4}^ - \] and \[Cl{O_4}^ - \]
Hence, Option B is the correct option.
Note: Early considerations of the geometry of hypervalent molecules returned familiar arrangements that were well explained by the VSEPR model for atomic bonding. In order to account for the observed bond angles, bond lengths and apparent violation of the Lewis octet rule, several alternative models have been proposed.
Complete Step-by-Step answer:
To determine which of the given molecules are hypervalent, let us first understand the molecular structures of these compounds:
\[Cl{O_4}^ - \]

As we can observe in this structure, chlorine is forming 6 double bonds and 1 single bond. This brings the total number of electrons present in the valence shell of chlorine to be:
\[ = {\text{ }}6{\text{ }}\left( 4 \right){\text{ }} + {\text{ }}1{\text{ }}\left( 2 \right){\text{ }} = {\text{ }}12\] electrons
Hence, the given species is hypervalent
\[B{F_3}\]

As we can observe in this structure, boron is forming 3 single bonds. This brings the total number of atoms present in the valence shell of boron to be:
\[ = {\text{ }}3\left( 2 \right){\text{ }} = {\text{ }}6\] electrons
Hence, the given species is not hypervalent
\[Cl{O_4}^ - \]

As we can observe in this structure, sulphur is forming 2 double bonds and 2 single bonds. This brings the total number of electrons present in the valence shell of sulphur to be:
\[ = {\text{ }}2{\text{ }}\left( 4 \right){\text{ }} + {\text{ }}2{\text{ }}\left( 2 \right){\text{ }} = {\text{ }}10\] electrons
Hence, the given species is hypervalent
\[C{O_3}^{2 - }\]

As we can observe in this structure, carbon is forming 2 single bonds and 1 double bond. This brings the total number of atoms present in the valence shell of carbon to be:
\[ = {\text{ }}2\left( 2 \right){\text{ }} + {\text{ }}1\left( 4 \right){\text{ }} = {\text{ }}8\] electrons
Hence, the given species is not hypervalent
Hence, we can conclude that, the species that are hypervalent are \[Cl{O_4}^ - \] and \[Cl{O_4}^ - \]
Hence, Option B is the correct option.
Note: Early considerations of the geometry of hypervalent molecules returned familiar arrangements that were well explained by the VSEPR model for atomic bonding. In order to account for the observed bond angles, bond lengths and apparent violation of the Lewis octet rule, several alternative models have been proposed.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Free Radical Substitution and Its Stepwise Mechanism

Understanding Geostationary and Geosynchronous Satellites

Other Pages
JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

