
Which of the following equations represent a pair of perpendicular straight lines?
A. ${y^2} + xy - {x^2} = 0$
B. ${y^2} - xy + {x^2} = 0$
C. ${x^2} + xy + {y^2} = 0$
D. ${x^2} + xy - 2{y^2} = 0$
Answer
232.8k+ views
Hint: A pair of straight lines, passing through the origin, are represented by a general equation of the form $a{x^2} + 2hxy + b{y^2} = 0$ . Sum of the slopes of the two lines is given by $\dfrac{{ - 2h}}{b}$ and the product of the slopes is given by $\dfrac{a}{b}$ . The angle between the two lines, $\theta $ , is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$. We will use this formula to derive the condition and use it to get the desired solution.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between the straight lines be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Now, we’ll consider each of the equations given in the provided options and check if they are perpendicular or not.
For option A:
${y^2} + xy - {x^2} = 0$
Comparing this equation with equation (1), we get:
$a = - 1,b = 1$
That means $a = - b$
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the equation given in option A.
While for equations given in other options, this condition was not satisfied.
Thus, the correct option is A.
Note: The above question can be solved even faster when the condition for the lines to be perpendicular is known. Thus, it is advised to a student to understand and learn the conditions required for a pair of lines to be perpendicular, parallel and coincident.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between the straight lines be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Now, we’ll consider each of the equations given in the provided options and check if they are perpendicular or not.
For option A:
${y^2} + xy - {x^2} = 0$
Comparing this equation with equation (1), we get:
$a = - 1,b = 1$
That means $a = - b$
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the equation given in option A.
While for equations given in other options, this condition was not satisfied.
Thus, the correct option is A.
Note: The above question can be solved even faster when the condition for the lines to be perpendicular is known. Thus, it is advised to a student to understand and learn the conditions required for a pair of lines to be perpendicular, parallel and coincident.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

