
Which of the following equations represent a pair of perpendicular straight lines?
A. ${y^2} + xy - {x^2} = 0$
B. ${y^2} - xy + {x^2} = 0$
C. ${x^2} + xy + {y^2} = 0$
D. ${x^2} + xy - 2{y^2} = 0$
Answer
162k+ views
Hint: A pair of straight lines, passing through the origin, are represented by a general equation of the form $a{x^2} + 2hxy + b{y^2} = 0$ . Sum of the slopes of the two lines is given by $\dfrac{{ - 2h}}{b}$ and the product of the slopes is given by $\dfrac{a}{b}$ . The angle between the two lines, $\theta $ , is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$. We will use this formula to derive the condition and use it to get the desired solution.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between the straight lines be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Now, we’ll consider each of the equations given in the provided options and check if they are perpendicular or not.
For option A:
${y^2} + xy - {x^2} = 0$
Comparing this equation with equation (1), we get:
$a = - 1,b = 1$
That means $a = - b$
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the equation given in option A.
While for equations given in other options, this condition was not satisfied.
Thus, the correct option is A.
Note: The above question can be solved even faster when the condition for the lines to be perpendicular is known. Thus, it is advised to a student to understand and learn the conditions required for a pair of lines to be perpendicular, parallel and coincident.
Formula Used: The angle between a pair of straight lines, passing through the origin, represented by $a{x^2} + 2hxy + b{y^2} = 0$ is calculated using the formula $\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ .
Complete step-by-step solution:
Let us consider a general pair of straight lines, passing through the origin.
$a{x^2} + 2hxy + b{y^2} = 0$ … (1)
Let the angle between the straight lines be $\theta $ .
Now, we know that the tangent of the angle between them is given by the formula:
$\tan \theta = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$ … (2)
For the lines to be perpendicular to each other, $\theta = \dfrac{\pi }{2}$ .
Substituting this in equation (2), we get:
$\tan \dfrac{\pi }{2} = \infty = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
From this we can conclude that:
$a + b = 0$
This gives:
$a = - b$ … (3)
Hence, for a pair of straight lines to be perpendicular to each other, $a = - b$ .
Now, we’ll consider each of the equations given in the provided options and check if they are perpendicular or not.
For option A:
${y^2} + xy - {x^2} = 0$
Comparing this equation with equation (1), we get:
$a = - 1,b = 1$
That means $a = - b$
From equation (3), we know that for two lines to be perpendicular $a = - b$ , which is satisfied with the equation given in option A.
While for equations given in other options, this condition was not satisfied.
Thus, the correct option is A.
Note: The above question can be solved even faster when the condition for the lines to be perpendicular is known. Thus, it is advised to a student to understand and learn the conditions required for a pair of lines to be perpendicular, parallel and coincident.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
