
When\[C{H_3}C{H_2}CHC{l_2}\] is treated with $NaN{H_2}$ , the product formed is:
A.
B.
C.
D.
Answer
150.9k+ views
Hint: To answer this question recall the methods for the preparation of alkyne from dihalides. Sodium amide is a strong reducing agent which removes the halide atoms and generates an alkyne.
Complete Step by step answer:
We know that Sodium amide ($NaN{H_2}$) is a strong base and is used for deprotonation of weak acids and also for elimination reactions. Treatment of either geminal dihalide (two halogens on one carbon) or vicinal dihalides (halogens on adjacent carbons) with two equivalents of $NaN{H_2}$ results in the formation of alkynes.
Understanding the mechanism of this reaction is important: First, there is deprotonation of functional groups which is what is known as initiation of an elimination reaction. In this case, halide atoms are removed to form the alkene. Specifically, this is an example of an E2 (elimination 2) reaction.
Since the alkene still has a halide attached, this too can be removed to generate a second double bond (π bond).
The mechanism of this reaction can be shown as:

We can see from the above reaction that we receive an alkyne as the major product of the reaction.
Therefore, we can conclude that the correct answer to this question is option B.
Note: We should keep in mind the formation of terminal alkynes by use of this reaction mechanism. The acidity of terminal alkynes plays an important role in major product determination when dihalides undergo base induced elimination reactions. High electronegativity of the triple bond in terminal alkynes makes the molecule acidic. Therefore, one of the base molecules will pull off the terminal hydrogen instead of one of the halides like we desire to happen in this reaction. This implies that we would need three bases for every terminal haloalkane instead of two to obtain an alkyne.
Complete Step by step answer:
We know that Sodium amide ($NaN{H_2}$) is a strong base and is used for deprotonation of weak acids and also for elimination reactions. Treatment of either geminal dihalide (two halogens on one carbon) or vicinal dihalides (halogens on adjacent carbons) with two equivalents of $NaN{H_2}$ results in the formation of alkynes.
Understanding the mechanism of this reaction is important: First, there is deprotonation of functional groups which is what is known as initiation of an elimination reaction. In this case, halide atoms are removed to form the alkene. Specifically, this is an example of an E2 (elimination 2) reaction.
Since the alkene still has a halide attached, this too can be removed to generate a second double bond (π bond).
The mechanism of this reaction can be shown as:

We can see from the above reaction that we receive an alkyne as the major product of the reaction.
Therefore, we can conclude that the correct answer to this question is option B.
Note: We should keep in mind the formation of terminal alkynes by use of this reaction mechanism. The acidity of terminal alkynes plays an important role in major product determination when dihalides undergo base induced elimination reactions. High electronegativity of the triple bond in terminal alkynes makes the molecule acidic. Therefore, one of the base molecules will pull off the terminal hydrogen instead of one of the halides like we desire to happen in this reaction. This implies that we would need three bases for every terminal haloalkane instead of two to obtain an alkyne.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
