
What is the value of the integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \]?
A. \[\pi \tan \dfrac{\pi }{8}\]
B. \[\log \tan \dfrac{\pi }{8}\]
C. \[\tan \dfrac{\pi }{8}\]
D. None of these
Answer
232.8k+ views
Hint: Here, a definite integral is given. First, simplify the function by using the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the original integral and solve the integral. After that, multiply the numerator and denominator by \[1 - \sin \varphi \] and simplify it by using the trigonometric identities. In the end, solve the integrals by using the standard integral formulas and apply the upper and lower limits to get the required answer.
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

