
What is the value of the integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \]?
A. \[\pi \tan \dfrac{\pi }{8}\]
B. \[\log \tan \dfrac{\pi }{8}\]
C. \[\tan \dfrac{\pi }{8}\]
D. None of these
Answer
216k+ views
Hint: Here, a definite integral is given. First, simplify the function by using the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the original integral and solve the integral. After that, multiply the numerator and denominator by \[1 - \sin \varphi \] and simplify it by using the trigonometric identities. In the end, solve the integrals by using the standard integral formulas and apply the upper and lower limits to get the required answer.
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

