
What is the value of the integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \]?
A. \[\pi \tan \dfrac{\pi }{8}\]
B. \[\log \tan \dfrac{\pi }{8}\]
C. \[\tan \dfrac{\pi }{8}\]
D. None of these
Answer
164.1k+ views
Hint: Here, a definite integral is given. First, simplify the function by using the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the original integral and solve the integral. After that, multiply the numerator and denominator by \[1 - \sin \varphi \] and simplify it by using the trigonometric identities. In the end, solve the integrals by using the standard integral formulas and apply the upper and lower limits to get the required answer.
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
