
What is the value of the integral \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \]?
A. \[\pi \tan \dfrac{\pi }{8}\]
B. \[\log \tan \dfrac{\pi }{8}\]
C. \[\tan \dfrac{\pi }{8}\]
D. None of these
Answer
162.6k+ views
Hint: Here, a definite integral is given. First, simplify the function by using the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the original integral and solve the integral. After that, multiply the numerator and denominator by \[1 - \sin \varphi \] and simplify it by using the trigonometric identities. In the end, solve the integrals by using the standard integral formulas and apply the upper and lower limits to get the required answer.
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {{{\sec }^2}xdx = \left[ {\tan x} \right]} _a^b\]
\[\int\limits_a^b {\sec x\tan xdx = \left[ {\sec x} \right]} _a^b\]
Complete step by step solution: The given definite integral is \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \].
Let consider,
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 1 \right)\]
Apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{\pi }{4} + \dfrac{{3\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}{{1 + \sin \left( {\dfrac{{4\pi }}{4} - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \left( {\pi - \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi + \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\varphi + \pi - \varphi } \right)}}{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \varphi }}} d\varphi \]
Now multiply the numerator and denominator by \[1 - \sin \varphi \].
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{\left( {1 + \sin \varphi } \right)\left( {1 - \sin \varphi } \right)}}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{1 - {{\sin }^2}\varphi }}} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \varphi }}{{{{\cos }^2}\varphi }}} d\varphi \]
Simplify the function by using the trigonometric ratios.
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{{{\cos }^2}\varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {\dfrac{1}{{{{\cos }^2}\varphi }} - \dfrac{{\sin \varphi }}{{\cos \varphi }}\dfrac{1}{{\cos \varphi }}} \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\left[ {{{\sec }^2}\varphi - \tan \varphi \sec \varphi } \right]} d\varphi \]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\varphi } d\varphi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \varphi \sec \varphi } d\varphi } \right]\]
Apply the standard integration formulas of the trigonometric functions.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left[ {\tan \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \left[ {\sec \varphi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}} \right]\]
Apply the upper and lower limits.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( {\tan \dfrac{{3\pi }}{4} - \tan \dfrac{\pi }{4}} \right) - \left( {\sec \dfrac{{3\pi }}{4} - \sec \dfrac{\pi }{4}} \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 1 - 1} \right) - \left( { - \sqrt 2 - \sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ {\left( { - 2} \right) - \left( { - 2\sqrt 2 } \right)} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right]\]
\[ \Rightarrow I = \pi \left( {\sqrt 2 - 1} \right)\]
\[ \Rightarrow I = \pi \tan \dfrac{\pi }{8}\]
Therefore,
\[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\varphi }{{1 + \sin \varphi }}} d\varphi = \pi \tan \dfrac{\pi }{8}\]
Option ‘A’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
