
What is the value of the integral \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\]?
A. 1
B. 0
C. \[ - 1\]
D. \[\dfrac{1}{2}\]
Answer
216.3k+ views
Hint: Here, a definite integral is given. First, simplify the integral by using the integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, add this integral with the given integral and simplify it. After that, solve the integral using the integration formulas. In the end, apply the upper and lower limits to get the value of the given integral.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_2^3 {\dfrac{{\sqrt {2 + 3 - x} }}{{\sqrt {5 - \left( {2 + 3 - x} \right)} + \sqrt {2 + 3 - x} }}} dx\]
\[ \Rightarrow I = \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx + \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }} + \dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x + \sqrt {5 - x} }}{{\sqrt {5 - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 1 dx\]
Apply the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[2I = \left[ x \right]_2^3\]
\[ \Rightarrow 2I = \left[ {3 - 2} \right]\]
\[ \Rightarrow 2I = 1\]
\[ \Rightarrow I = \dfrac{1}{2}\]
Therefore, \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx = \dfrac{1}{2}\].
Option ‘D’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Apply the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_2^3 {\dfrac{{\sqrt {2 + 3 - x} }}{{\sqrt {5 - \left( {2 + 3 - x} \right)} + \sqrt {2 + 3 - x} }}} dx\]
\[ \Rightarrow I = \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\] \[.....\left( 2 \right)\]
Now add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx + \int\limits_2^3 {\dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }} + \dfrac{{\sqrt {5 - x} }}{{\sqrt x + \sqrt {5 - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 {\left[ {\dfrac{{\sqrt x + \sqrt {5 - x} }}{{\sqrt {5 - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_2^3 1 dx\]
Apply the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b\].
\[2I = \left[ x \right]_2^3\]
\[ \Rightarrow 2I = \left[ {3 - 2} \right]\]
\[ \Rightarrow 2I = 1\]
\[ \Rightarrow I = \dfrac{1}{2}\]
Therefore, \[\int\limits_2^3 {\dfrac{{\sqrt x }}{{\sqrt {5 - x} + \sqrt x }}} dx = \dfrac{1}{2}\].
Option ‘D’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

