
What is the value of the integral \[\int\limits_0^\pi {x\sin xdx} \]?
A. \[\pi \]
B. 0
C. 1
D. \[{\pi ^2}\]
Answer
216k+ views
Hint: Here, a definite integral is given. First, apply the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] and simplify the integral. After that, add this integral with the original integral and solve the integral. In the end, apply the upper and lower limits to get the required answer.
Formula Used: Definite integral rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int {\sin xdx = - \cos x} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {x\sin xdx} \].
Let consider,
\[I = \int\limits_0^\pi {x\sin xdx} \] \[.....\left( 1 \right)\]
Now apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the above integral.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin \left( {\pi - x} \right)dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {x\sin xdx} + \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi \sin xdx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\sin xdx} \]
Solve the integral.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limit.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos \pi + \cos 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \left( { - 1} \right) + 1} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ 2 \right]\]
\[ \Rightarrow I = \pi \]
Therefore, \[\int\limits_0^\pi {x\sin xdx} = \pi \]
Option ‘A’ is correct
Note: students often get confused and solve the integral \[\int {\sin xdx = \cos x} \]. This formula is incorrect. Sometimes they forget to add the negative sign. The correct formula is \[\int {\sin xdx = - \cos x} \].
Formula Used: Definite integral rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
\[\int {\sin xdx = - \cos x} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {x\sin xdx} \].
Let consider,
\[I = \int\limits_0^\pi {x\sin xdx} \] \[.....\left( 1 \right)\]
Now apply the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the above integral.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin \left( {\pi - x} \right)dx} \]
\[ \Rightarrow I = \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {x\sin xdx} + \int\limits_0^\pi {\left( {\pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)\sin xdx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi \sin xdx} \]
\[ \Rightarrow I = \dfrac{\pi }{2}\int\limits_0^\pi {\sin xdx} \]
Solve the integral.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limit.
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \cos \pi + \cos 0} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ { - \left( { - 1} \right) + 1} \right]\]
\[ \Rightarrow I = \dfrac{\pi }{2}\left[ 2 \right]\]
\[ \Rightarrow I = \pi \]
Therefore, \[\int\limits_0^\pi {x\sin xdx} = \pi \]
Option ‘A’ is correct
Note: students often get confused and solve the integral \[\int {\sin xdx = \cos x} \]. This formula is incorrect. Sometimes they forget to add the negative sign. The correct formula is \[\int {\sin xdx = - \cos x} \].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

